The grading policy for this homework is as follows: If you leave a question blank, you receive 1 point for that question. If you answer a question, the question will be graded on a scale from 0 to 5 . This homework has five questions.
You do not need to rewrite the question or copy down pseudo-code that was presented in class.

1. The dynamic programming algorithm for finding the length of the maximum total length set of non-overlapping jobs is:
$\operatorname{MaxLengthSched}\left(S=\left[\left(s_{1}, f_{1}\right),\left(s_{2}, f_{2}\right), \ldots,\left(s_{n}, f_{n}\right)\right]\right)$
2. Sort jobs so that $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$.
3. Calculate last $[j]$ for $j=1,2, \ldots, n$
4. $L[0]=0$
5. For $j=1$ to n

$$
L[j]=\max \left\{L[\operatorname{last}[j]]+\left(f_{j}-s_{j}\right), L[j-1]\right\}
$$

4. Return $L[n]$

Recall that last $[j]$ is the largest index less than j of a job that doesn't overlap job j (or 0 if no such job exists).

We can obtain three other algorithms by modifying step 1. For each of the following proposed replacements for step 1, either: write "works" if the resulting algorithm always produces the length of an optimal (maximum total length) schedule for input S (no proof is necessary), or give an input for which the resulting algorithm fails to produce the optimal length. (Note: The algorithm may fail by reporting a length that is smaller or larger than the optimal length.)
(a) 1. Sort jobs so that $f_{1} \geq f_{2} \geq \cdots \geq f_{n}$.
(b) 1. Sort jobs so that $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$.
(c) 1. Sort jobs so that $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$.
2. Suppose you want to travel down the Mississippi River by canoe. You don't own a canoe but you can rent them at n different cities along the river. We'll number these cities in downstream order from 1 (your starting point) to n (your ending point). For each pair of cities i, j where $i<j$ there is a price $p_{i j}$ to rent a canoe from city i to city j. Given this set of prices, find the cheapest rental cost to travel from city 1 to city n. Note that you cannot paddle upstream. (There is an $O\left(n^{2}\right)$-time solution.)
3. (Exercise 6.1 in Algorithms by Dasgupta, Papadimtriou, and Vazirani) A contiguous subsequence of a list S is a subsequence made up of consecutive elements of S. For instance, if S is

$$
5,15,-30,10,-5,40,10
$$

then $15,-30,10$ is a contiguous subsequence but $5,15,40$ is not. Give a linear time algorithm for the following task:

Input: A list of numbers $a_{1}, a_{2}, \ldots, a_{n}$.
Output: A contiguous subsequence of maximum sum (a subsequence of length zero has sum zero).

For the preceding example, the answer would be $10,-5,40,10$, with a sum of 55 .
(Hint: For each $j \in\{1,2, \ldots, n\}$, consider contiguous subsequences ending exactly at position j.)

