
CPSC 320 Problem Set 7 13 November 2009
W. Evans Due: 20 November 2009 at the start of class.

The grading policy for this homework is as follows: If you leave a question
blank, you receive 1 point for that question. If you answer a question, the
question will be graded on a scale from 0 to 5. This homework has five
questions.
You do not need to rewrite the question or copy down pseudo-code that was
presented in class.

1. The dynamic programming algorithm for finding the length of the maximum total length set
of non-overlapping jobs is:

MaxLengthSched(S = [(s1, f1), (s2, f2), . . . , (sn, fn)])
1. Sort jobs so that f1 ≤ f2 ≤ · · · ≤ fn.
2. Calculate last[j] for j = 1, 2, . . . , n
2. L[0] = 0
3. For j = 1 to n

L[j] = max{L[last[j]] + (fj − sj), L[j − 1]}
4. Return L[n]

Recall that last[j] is the largest index less than j of a job that doesn’t overlap job j (or 0 if
no such job exists).

We can obtain three other algorithms by modifying step 1. For each of the following proposed
replacements for step 1, either: write “works” if the resulting algorithm always produces the
length of an optimal (maximum total length) schedule for input S (no proof is necessary), or
give an input for which the resulting algorithm fails to produce the optimal length. (Note:
The algorithm may fail by reporting a length that is smaller or larger than the optimal length.)

(a) 1. Sort jobs so that f1 ≥ f2 ≥ · · · ≥ fn.

(b) 1. Sort jobs so that s1 ≤ s2 ≤ · · · ≤ sn.

(c) 1. Sort jobs so that s1 ≥ s2 ≥ · · · ≥ sn.

2. Suppose you want to travel down the Mississippi River by canoe. You don’t own a canoe
but you can rent them at n different cities along the river. We’ll number these cities in
downstream order from 1 (your starting point) to n (your ending point). For each pair of
cities i, j where i < j there is a price pij to rent a canoe from city i to city j. Given this set
of prices, find the cheapest rental cost to travel from city 1 to city n. Note that you cannot
paddle upstream. (There is an O(n2)-time solution.)

3. (Exercise 6.1 in Algorithms by Dasgupta, Papadimtriou, and Vazirani) A contiguous subse-
quence of a list S is a subsequence made up of consecutive elements of S. For instance, if S
is

5, 15,−30, 10,−5, 40, 10

then 15,−30, 10 is a contiguous subsequence but 5, 15, 40 is not. Give a linear time algorithm
for the following task:

1



Input: A list of numbers a1, a2, . . . , an.
Output: A contiguous subsequence of maximum sum (a subsequence of length zero
has sum zero).

For the preceding example, the answer would be 10,−5, 40, 10, with a sum of 55.

(Hint: For each j ∈ {1, 2, . . . , n}, consider contiguous subsequences ending exactly at position
j.)

2


