
CPSC 320 Problem Set 6 solutions 23 November 2009

1. Consider the three jobs A = (0, 5), B = (1, 2), and C = (3, 4).

A

B C

The optimal solution is {B, C}.

(a) This version considers the jobs in the order A, C,B and takes only job A.

(b) This version considers the jobs in the order A, B,C and takes only job A.

(c) works. Suppose S is ordered so that s1 ≥ s2 ≥ · · · ≥ sn. Let S′ be the set of n jobs
where s′

i = −fi and f ′
i = −si, thus f ′

1 ≤ f ′
2 ≤ · · · ≤ f ′

n. In addition, the jobs in S′

overlap in exactly the same way as jobs in the old set, i.e., (si, fj) overlaps (sj , fj) if and
only if (−fi,−si) overlaps (−fj ,−sj). Thus we may view this version of the algorithm,
operating on input S, as the original version of the algorithm, operating on input S′.
Since the original version is correct, this version is also correct.

2. Dijkstra’s algorithm maintains a priority queue that contains vertices that have not yet been
added to the shortest path tree rooted at s. The priority of such a vertex is the shortest path
length from s to the vertex that uses edges of the shortest path tree plus one additional edge
not in the shortest path tree. I claim that the number of different priorities of vertices in the
priority queue is at most W + 2. Suppose p is the minimum priority in the queue. Every
vertex in the shortest path tree has a shortest path length from s that is at most p. (Why?)
Since every edge has weight in {0, 1, . . . ,W}, every vertex in the queue that can be reached
from the tree by an edge not in the tree has priority at most p + W . Those that cannot be
reached have priority ∞. That is at most W + 2 different priorities.

Since the priorities less than ∞ are integers, we can use an array Q of linked lists of size
W + 1 to implement the priority queue. At any point, we have an index i that indicates
which array entry holds the minimum priority vertices. Initially i = 0. When deleteMin is
performed, we check if Q[i] is empty. If it is we increment i until we find a non-empty Q[i]
(or stop if all are empty). We then remove and return one of the vertices in the linked list in
Q[i]. When insert or updatePriority are performed, we store the vertex v and its priority
p into array location Q[p mod (W + 1)]. Each of these operations takes O(W ) time, leading
to a total running time of O(Wn + m) for Dijkstra’s algorithm.

1


