> The grading policy for this homework is as follows: If you leave a question blank, you receive 1 point for that question. If you answer a question, the question will be graded on a scale from 0 to 5 . This homework has four questions.
> You do not need to rewrite the question or copy down pseudo-code that was presented in class.

1. The greedy scheduling algorithm to find a maximum size set of non-overlapping jobs is:
$\operatorname{GreedySched}\left(S=\left[\left(s_{1}, f_{1}\right),\left(s_{2}, f_{2}\right), \ldots,\left(s_{n}, f_{n}\right)\right]\right)$
2. Sort jobs so that $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$.
3. $A=\emptyset$
4. For $i=1$ to n

If job i doesn't overlap any job in A then $A=A \cup\{i\}$
4. Return A

We can obtain three other scheduling algorithms by modifying step 1. For each of the following proposed replacements for step 1, either: write "works" if the resulting algorithm always produces an optimal (maximum size) schedule for input S (no proof is necessary), or give an input for which the resulting algorithm would fail to produce an optimal schedule.
(a) 1. Sort jobs so that $f_{1} \geq f_{2} \geq \cdots \geq f_{n}$.
(b) 1. Sort jobs so that $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$.
(c) 1. Sort jobs so that $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$.
2. Suppose edge weights are integers in the set $\{0,1,2, \ldots, W\}$. How would you modify Dijkstra's algorithm to compute the shortest paths in $G=(V, E)$ from a given source vertex s to all other vertices in $O(W n+m)$ time?

Hint: How many different priorities are in the priority queue at any given time?

