
CPSC 320 Problem Set 5 solutions 2 November 2009

1. Suppose we start with a graph that has n vertices and no edges. This graph contains n
connected components. If we add an edge (u, v) to this graph then either 1) u and v are in
different connected components and the addition of (u, v) causes the number of connected
components to decrease by one; or 2) u and v are in the same connected component and the
number of connected components stays the same. For the graph to be connected after the
addition of n−1 edges, every edge must have connected two different connected components.
For the graph to have a cycle, some edge must have connected two vertices in the same
connected component, a contradiction.

2. Suppose two minimum spanning trees have a different number of edges of some weight. Choose
such a pair of trees that have the most edges in common. Let b be the weight where one tree,
T , has more edges of weight b than the other tree R. Let (u, v) be an edge in T with weight b
that is not in R. Add (u, v) to R. This creates a cycle C. All the edges on cycle C have weight
at most b (otherwise we could remove the heavy edge on C from R ∪ {(u, v)} and produce a
spanning tree of smaller weight). Since T is a minimum spanning tree, there must be at least
one edge (x, y) of weight b in C that is not in T . Otherwise we could remove the edge (u, v)
from T , splitting T into two connected components one of which contains u and the other
v and then reconnect the components by a lighter weight edge from the cycle C, creating a
spanning tree of smaller weight. Removing (x, y) from R ∪ {(u, v)} creates a spanning tree
with the same weight as R but with one more edge in common with T , a contradiction.

If all the edge weights are distinct then every minimum spanning tree is the same, for if two
minimum spanning trees differ, then one contains an edge (of, say, weight b) that the other
doesn’t. Since no other edge has weight b, the trees differ in the number of edges of weight b,
contradicting the previous claim.

3. (a) Define the minimum spanning forest of an undirected graph G, MSF(G), to be the union
of the minimum spanning trees of its connected components. If G is connected then its
minimum spanning forest is the same as its minimum spanning tree. Define the decompo-
sition forest of an undirected graph G, DF(G), to be the union of the decomposition trees
of its connected components. If G is connected then its decomposition forest is the same
as its decomposition tree. For the input graph G, let Gi = (V,Ei) where Ei is the set of
the i smallest weight edges. We claim that, for all values of i, DF(Gi) = DF(MSF(Gi)).
We prove the claim by induction on i. As a base case, the graph G0 has no edges and n
connected components, so MSF(G0) = G0 and DF(G0) = DF(MSF(G0)). Suppose the
claim is true for Gi−1. The graph Gi is the same as Gi−1 except for the addition of one
edge. Let’s call that edge (u, v).
If u and v are in the same connected component of Gi−1 then MSF(Gi) = MSF(Gi−1)
(because (u, v) is the maximum weight edge in Gi). In addition, DF(Gi) = DF(Gi−1)
since the addition of (u, v) does not create a new connected component in Gi. So
DF(Gi) = DF(Gi−1) = (by induction hypothesis) DF(MSF(Gi−1)) = DF(MSF(Gi)).
If u and v join two connected components, A and B, in Gi−1 then let C be this new
component. The decomposition forest for Gi contains a new vertex for C that connects
the two vertices A and B. The minimum spanning forest for Gi contains the edge (u, v),
since it is the smallest weight edge that connects a vertex in A with a vertex in V −A. It

1



also connects two components in MSF(Gi−1), in fact the components A and B, creating
the component C. Thus DF(MSF(Gi−1)∪{u, v}) = DF(MSF(Gi−1))∪{(C, A), (C, B)}.
So

DF(Gi) = DF(Gi−1) ∪ {(C, A), (C, B)}
= DF(MSF(Gi−1)) ∪ {(C, A), (C, B)}(by induction)
= DF(MSF(Gi−1) ∪ {(u, v)}) = DF(MSF(Gi))

(b) Use a slight modification of Kruskal’s algorithm. Modify the nodes of the disjoint sets
structure so that each holds a pointer to a node of the decomposition tree, in addition
to its normal rank and parent-pointer. Initially, make node u of the disjoint sets struc-
ture, which represents vertex u of the graph G, point to leaf u of the decomposition
tree. During Kruskal’s algorithm, whenever the Union operation is called, create a new
decomposition tree node C for the connected component created by the Union opera-
tion. Give this node, C, the two children, A and B, which are the decomposition tree
nodes pointed to by the two roots of the trees in the disjoint sets structure that are
being Unioned. Modify the root of the resulting tree in the disjoint sets structure so it
points to the new decomposition tree node C (note: it used to point to either A or B.)
At the end of the algorithm, the root of the disjoint sets structure points to the root
of the decomposition tree. The running time of the algorithm is the same as Kruskal’s
algorithm except for an additional constant amount of time per Union operation, and
O(n) time to initialize the leaves of the decomposition tree and pointers in the disjoint
sets structure.

2


