
CPSC 320 Problem Set 4 solutions 27 October 2009

1. (a) Output the minimum of the first n − k + 1 elements. Finding the minimum of these
elements takes n− k comparisons.

(b) If you said “Any algorithm must examine at least n − k elements because, if it didn’t,
the ones it doesn’t examine could be the k smallest” that’s o.k. but it doesn’t bound
the number of comparisons that the algorithm makes. (One comparison “examines” two
elements.)
To bound the number of comparisons: If an algorithm makes fewer than n− k compar-
isons then the graph of comparisons (where vertices are elements and (i, j) is an edge
if and only if the algorithm compared the ith element to the jth element) would have
more than k connected components. Whatever element the algorithm outputs, we can
make all the elements in its component larger than the elements in the other compo-
nents, without changing the outcome of an comparison made by the algorithm, and thus
without changing its output. There are at least k elements in the other components
since there are at least k other components. Thus the output element is not one of the
k smallest.

2. Claim: Any algorithm that solves the two-consecutive-zeros problem must perform, for some
worst case input string, at least n − 1 operations if n = 1 (mod 3) and at least n operations
otherwise.

Proof. If n = 0, 1, the claim is trivially true. If n = 2, the adversary answers ’0’ to the
algorithm’s first query and thus forces any correct algorithm to query the other bit.

Assume that the claim is true for strings of length at most n − 1. Given a string of length
n > 2, let i be the position of the algorithm’s first query.

If both i−1 6= 1 (mod 3) and n− i 6= 1 (mod 3) then the adversary answers ’1’ for position i,
and considers positions 1 . . . i− 1 and i + 1 . . . n as two separate subproblems. By induction,
any correct algorithm must query every position in both subproblems in the worst case, since
i− 1 6= 1 (mod 3) and n− i 6= 1 (mod 3). (Here, we assume that the adversary never reveals
two consecutive zeros in either subproblem.) Thus the claim holds in this case.

If either i− 1 = 1 (mod 3) or n− i = 1 (mod 3) then the adversary answers ’0’ for position
i and sets positions i − 1 and i + 1 to ’1’. This means that if, in the future, the algorithm
queries position i−1 or i+1 the adversary answers ’1’. Notice that the algorithm must query
both position i − 1 and i + 1 (if they are in the range 1 . . . n) at some point or it cannot be
correct. The adversary treats positions 1 . . . i− 2 and i + 2 . . . n as two separate subproblems.
If i = 1 or i = n then there is only one subproblem, its size is equal to 0 (mod 3), and by
induction the claim holds. Otherwise, either i − 2 or n − i − 1 is equal to 0 (mod 3) and
thus the other is equal to (i− 2) + (n− i− 1) = n− 3 = n (mod 3). If n 6= 1 (mod 3) then
the sizes of both subproblems are not equal to 1 (mod 3). If n = 1 (mod 3) then only one
subproblem has size equal to 1 (mod 3). In either case, the claim holds.

The above proof suggests an algorithm that queries n− 1 bits when n = 1 (mod 3):

1



HasConsecutiveZeros(B[1 . . . n])
If n < 2 return False.
If n = 2 return (B[1] = 0 and B[2] = 0).
If B[2] = 1 then return HasConsecutiveZeros(B[3 . . . n])

(Note: the algorithm doesn’t need to look at B[1]).
If B[3] = 0 then return True.
return (HasConsecutiveZeros(B[4 . . . n]) or B[1] = 0).

3. Consider the (infinite) rooted binary tree where a left branch represents a ’0’ and a right
branch represents a ’1’. Now every bit string corresponds to a node of this tree. For example,
0 is the left child of the root and 00 is this left child’s left child. The nodes that correspond to
the bit strings of a prefix code have the property that no node is the ancestor of another. So
these nodes are the leaves of a (finite) binary tree. The tree’s depth (or height) is the length
of the longest bit string in the prefix code. If a binary tree has n leaves then it has depth at
least lg n (we use this fact for our decision tree lower bounds), and thus the longest bit string
has length at least lg n.

4. (a) The idea is to compare the middle elements, with index m = b(n + 1)/2c, of each array.
Suppose A[m] < B[m] (the other case is symmetric). For every element of A[1 . . . m−1],
there are at least n−m+ 1 elements in A that are bigger and, since A[m] < B[m], there
are at least another n−m + 1 elements in B that are bigger. That is a total of at least
2n− 2m + 2 ≥ n + 1 elements that are bigger. Since the nth smallest (the median) has
only n elements bigger than it, all of A[1 . . . m − 1] must be smaller than the median.
Similarly, all of B[m + 1 . . . n] must be larger than the median.
If n is odd, A[1 . . . m−1] has the same number of elements as B[m+1 . . . n]. By removing
them both, we remove an equal number of elements smaller than the median and larger
than the median. The original median is the median of the remaining elements, so we
can recurse. If n is even, A[1 . . . m − 1] has one fewer element than B[m + 1 . . . n], but
in this case A[m] cannot be the median1. Thus, we remove A[1 . . . m] and B[m + 1 . . . n]
and we can still recurse.
In both cases, we decrease the problem size by about a factor of 1/2. In the worst case,
when n = 3, we decrease the problem size by a factor 2/3. Even assuming this worst
case decrease, the number of times we recurse before reaching a base case is O(log n).
Each recursive call involves a constant amount of work, so the running time is O(log n).

Median(A[1 . . . n], B[1 . . . n])
If n = 1 then

If A[1] < B[1] then return A[1] else return B[1].
If n = 2 then

If A[2] < B[1] then return A[2].
If B[2] < A[1] then return B[2].
If A[1] < B[1] then return B[1].
return A[1].

m = b(n + 1)/2c
1If n is even, 2n− 2m + 2 = n + 2.

2



If n is even then m′ = m + 1 else m′ = m
If A[m] < B[m] then return Median(A[m′ . . . n], B[1 . . . m])
return Median(A[1 . . . m], B[m′ . . . n])

(b) We can model any comparison-based algorithm as a decision tree. Since any correct
algorithm for this problem must be able to output any one of the 2n input elements as
the median, we know that the number of leaves in the decision tree is at least 2n. Since
the decision tree is a binary tree2, the depth of the tree is Ω(log n). Thus the worst
case number of comparisons made by any correct algorithm on inputs of total size 2n is
Ω(log n), which matches (asymptotically) the running time of our algorithm. In other
words, our algorithm is asymptotically optimal.

2We can choose an input in which all the elements are distinct to avoid the possibility that a comparison results
in equality.

3


