1. You are given n elements and an integer k such that $1 \leq k \leq n$. The problem is to find any one of the k smallest elements. For example, if $k=3$, the output may be the first-, second-, or third-smallest element.
(a) Give a fast algorithm to solve this problem. How many comparisons does your algorithm perform?
Hint: Don't look for something complicated. One insight gives a short, simple algorithm.
(b) Give a lower bound, as a function of n and k, on the number of comparisons needed to solve this problem. Try to find a lower bound that matches the number of comparisons made by your algorithm exactly.
2. Consider the problem of determining if a bit string of length n contains two consecutive 0's. The basic operation is to examine a position in the string to see if it is a 0 or a 1 . For each $n=2,3,4,5$ either give an adversary strategy to force any algorithm to examine every bit (in other words, describe how to provide an input to any algorithm "on-demand" that forces the algorithm to examine every bit), or give an algorithm that solves the problem by examining fewer than n bits.

Extra credit (hard): For what integers n must any algorithm that solves this problem examine every bit of a (worst case) bit string of length n ? Why?
3. A set of bit strings is called a prefix code if none of the strings is a prefix of another string. For example, the four strings $00,01,10$, and 11 form a prefix code, as do $001,1110,101001$, 0001 ; but the strings $001,1110,0011,0001$ do not (because 001 is a prefix of 0011). Prove that any prefix code of n bit strings must contain some string with at least $\lg n$ bits.
Hint: Relate prefix codes to binary trees, and number of bits to depth.
4. Suppose A and B are two arrays, each with n elements sorted in ascending order. You may assume that all elements are distinct.
(a) Devise an $O(\log n)$ algorithm to find the nth smallest of the $2 n$ elements.
(b) Give a asymptotically matching lower bound for this problem.

