
CPSC 320 Problem Set 4 16 October 2009
W. Evans Due: 23 October 2009 at the start of class.

1. You are given n elements and an integer k such that 1 ≤ k ≤ n. The problem is to find any
one of the k smallest elements. For example, if k = 3, the output may be the first-, second-,
or third-smallest element.

(a) Give a fast algorithm to solve this problem. How many comparisons does your algorithm
perform?
Hint: Don’t look for something complicated. One insight gives a short, simple algorithm.

(b) Give a lower bound, as a function of n and k, on the number of comparisons needed to
solve this problem. Try to find a lower bound that matches the number of comparisons
made by your algorithm exactly.

2. Consider the problem of determining if a bit string of length n contains two consecutive 0’s.
The basic operation is to examine a position in the string to see if it is a 0 or a 1. For each
n = 2, 3, 4, 5 either give an adversary strategy to force any algorithm to examine every bit (in
other words, describe how to provide an input to any algorithm “on-demand” that forces the
algorithm to examine every bit), or give an algorithm that solves the problem by examining
fewer than n bits.

Extra credit (hard): For what integers n must any algorithm that solves this problem examine
every bit of a (worst case) bit string of length n? Why?

3. A set of bit strings is called a prefix code if none of the strings is a prefix of another string.
For example, the four strings 00, 01, 10, and 11 form a prefix code, as do 001, 1110, 101001,
0001; but the strings 001, 1110, 0011, 0001 do not (because 001 is a prefix of 0011). Prove
that any prefix code of n bit strings must contain some string with at least lg n bits.

Hint: Relate prefix codes to binary trees, and number of bits to depth.

4. Suppose A and B are two arrays, each with n elements sorted in ascending order. You may
assume that all elements are distinct.

(a) Devise an O(log n) algorithm to find the nth smallest of the 2n elements.

(b) Give a asymptotically matching lower bound for this problem.

1


