1. Let $A[1 \ldots n]$ be an array of n elements and $k \leq n$ an integer. We want to find an algorithm that outputs the k smallest elements in A (in any order).
(a) Describe an algorithm that takes $O(n)$ time to solve this problem.
(b) Use the decision tree lower bound technique to argue that any algorithm must make at least $k \lg (n / k)$ comparisons in the worst case to output the k smallest elements. (Why is $\left.\binom{n}{k} \geq(n / k)^{k} ?\right)$
Is this a good lower bound?
2. Suppose we are given a list of n people who want to fly to the moon (and return). Person i has priority p_{i} and they weigh w_{i} pounds. You may assume all of the priorities are different. Our spaceship can carry at most k pounds which is, unfortunately, smaller than the total weight of all the people. If priority $p_{i}>p_{j}$ then if we take person j we must take person i.
Describe an algorithm that runs in $O(n)$ time that finds the largest set of people we can fly to the moon without exceeding the weight limit. In other words, we are looking for the priority p_{m} of a person m such that

$$
\sum_{p_{i}>p_{m}} w_{i} \leq k \quad \text { and } \quad \sum_{p_{i} \geq p_{m}} w_{i}>k
$$

We fly everyone with priority greater than p_{m}. Notice that if everyone weighed 1 pound, this would be the k-select problem.
Hint: Use recursion. How can you use the linear time k-select algorithm to insure that the subproblems are small?

