1. We know from class that when n is a power of $2, T(n)=n(c \lg n+1)$ and that $T(n)$ is an increasing function. Thus,

$$
\begin{aligned}
T(n) & \geq T\left(2^{\lfloor\lg n\rfloor}\right) & & T(n) \text { increasing } \\
& =2^{\lfloor\lg n\rfloor}(c\lfloor\lg n\rfloor+1) & & n \text { a power of } 2 \\
& \geq 2^{\lg n-1}(c(\lg n-1)+1) & & \\
& =(n / 2)(c \lg n-c+1) & & \\
& \geq(n / 2)(c \lg n-c) & & \\
& =(n / 4) c \lg n+(n / 4) c \lg n-(n / 2) c & & \text { for } n \geq 4 \\
& \geq(n / 4) c \lg n & & \text { for } d<c / 4
\end{aligned}
$$

2.

The final summation is $\sum_{i=0}^{\lg n}(3 / 2)^{i} n=n\left((3 / 2)^{\lg n+1}-1\right) /(3 / 2-1)=3 n^{\lg 3}-2 n$. We can avoid splitting our proof into cases if we prove the slightly weaker claim that $T(n) \leq 3 n^{\lg 3}-4 n$. The inductive step is:

$$
\begin{array}{rlrl}
T(n) & =3 T(\lfloor n / 2\rfloor)+n & & \\
& \leq 3(3\lfloor n / 2\rfloor \lg 3 & \lg \lfloor n / 2\rfloor)+n & \\
& \text { by inductive hypothesis } \\
& \leq 3\left(3(n / 2)^{\lg 3}-4(n-1) / 2\right)+n & & (n-1) / 2 \leq\lfloor n / 2\rfloor \leq n / 2 \\
& \leq 3 n^{\lg 3}-6(n-1)+n & & \\
& \leq 3 n^{\lg 3}-4 n & & \text { for } n \geq 6
\end{array}
$$

3.

Theorem. $T(n) \leq n 5^{n}$ for all $n \geq 0$.
Proof. (by induction on n) Base case: For $n=0, T(0)=0 \leq 0 \cdot 5^{0}$. For $n=1, T(1)=1 \leq 1 \cdot 5^{1}$. Assume the claim is true for $T(n-1)$ and $T(n-2)$. We will show it is true for $T(n)$ where $n \geq 2$.

$$
\begin{aligned}
T(n) & =4 T(n-1)+5 T(n-2)+5^{n} \\
& \leq 4(n-1) 5^{n-1}+5(n-2) 5^{n-2}+5^{n} \quad \text { by inductive hypothesis } \\
& =4(n-1) 5^{n-1}+(n-2) 5^{n-1}+5^{n} \\
& \leq 5(n-1) 5^{n-1}+5^{n} \\
& =(n-1) 5^{n}+5^{n} \\
& =n 5^{n} .
\end{aligned}
$$

4. $\lfloor n / 2\rfloor+1$ of the integers from 0 to n have last bit equal to 0 . The remaining $\lceil n / 2\rceil$ integers have last bit equal to 1 . If one number is missing then we can determine, by examining the n last bits, what the last bit of the missing number is. We can then reduce the problem to looking for the missing number among the at most $n / 2$ numbers with that last bit. (Continue the process by looking at the second to last bit, etc.)
The running time is $T(n) \leq n+T(n / 2)$ with $T(1)=1$. Thus $T(n)=O(n)$.
5. The first recurrence, $T(n)$, has $a=7, b=2$, and $f(n)=n^{2}$. Since $n^{2} \in O\left(n^{\log _{2} 7-\epsilon}\right)$ for $\epsilon>0$ $\left(\log _{2} 7=2.8 \ldots\right)$, the Master Theorem tells us that $T(n) \in \Theta\left(n^{\lg 7}\right)$.
The second recurrence, $T^{\prime}(n)$, has $a=a, b=4$, and $f(n)=n^{2}$. If $a=49$ then $n^{\log _{4} a}=n^{\log _{2} 7}$ and $T^{\prime}(n) \in \Theta\left(n^{\lg 7}\right)$. So choose $a=48$.
