1. We saw in class that $T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+c n, T(1)=1$ is $O(n \log n)$. Show that it is $\Omega(n \log n)$ (and, thus, $\Theta(n \log n)$).
2. (Exercise 4.2-1 CLRS) Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n)=3 T(\lfloor n / 2\rfloor)+n$. Use the substitution method to verify your answer.
3. Use a recursion tree to guess a good (meaning small) upper bound on $T(n)=4 T(n-1)+$ $5 T(n-2)+5^{n}, T(0)=0, T(1)=1$. Use induction to prove your result.
4. (Problem 4-2 CLRS) Finding the missing integer An array $A[1 \ldots n]$ contains all the integers from 0 to n except one. It would be easy to determine the missing integer in $O(n)$ time by using an auxiliary array $B[0 \ldots n]$ to record which numbers appear in A. In this problem, however, we cannot access an entire integer in A with a single operation. The elements of A are represented in binary, and the only operation we can use to access them is "fetch the j th bit of $A[i]$," which takes constant time.

Show that if we use only this operation, we can still determine the missing integer in $O(n)$ time.
5. (Exercise 4.3-2 CLRS) The recurrence $T(n)=7 T(n / 2)+n^{2}$ describes the running time of an algorithm A. A competing algorithm A^{\prime} has a running time of $T^{\prime}(n)=a T^{\prime}(n / 4)+n^{2}$. What is the largest integer value for a such that A^{\prime} is asymptotically faster than A ?
Hint: Use the master method.

