1. Proof by induction k. For $k=0$, a set of no shims allows us to create thicknesses from 0 to $2^{1}-1=0$. Assume that the claim is true for k shims. A set of $k+1$ shims contains shims of thickness $2^{0}, 2^{1}, \ldots, 2^{k-1}-$ and so, by induction, can create all thicknesses from 0 to $2^{k}-1$ using only these shims - plus it contains a shim of thickness 2^{k}. If we add this shim to the each of the subsets that created thicknesses 0 to $2^{k}-1$, we obtain thicknesses 2^{k} to $2^{k+1}-1$. Thus we obtain all thicknesses from 0 to $2^{k+1}-1$.
2. The idea is to swap the red elements from A into the first positions of A, then swap the white elements into the first positions of A following the red elements. To do this we first maintain the loop invariant: At step i (for i from 1 to $n+1$), all of the red elements in $A[1 \ldots i-1]$ are in $A[1 \ldots r-1]$ (and the non-red elements are in $A[r \ldots i-1]$). Initially, $r=i=1$ so the loop invariant holds. To maintain the loop invariant from step i to $i+1$, we execute:

If $A[i]$ is RED then
swap $A[i]$ with $A[r]$
$r=r+1$
$i=i+1$

When i reaches $n+1$, we are done with the first phase. The second phase, moving the white elements into the positions following the red elements, uses a similar loop invariant: At step i (for i from r to $n+1$), all of the white elements in $A[r \ldots i-1]$ are in $A[r \ldots w-1]$ (and the blue elements are in $A[w \ldots i-1])$. Initially, $w=i=r$ so the loop invariant holds. To maintain the loop invariant from step i to $i+1$, we execute:

If $A[i]$ is white then
swap $A[i]$ with $A[w]$
$w=w+1$
$i=i+1$

When i reaches $n+1$, we are done.
3. The function is the sum of:

$$
2^{\lg (n) / 2} n \lg (n / 4)=n^{1 / 2} n(\lg n-\lg 4)=n^{1.5} \lg n-2 n^{1.5}
$$

and

$$
4^{\lg (n)} \log _{5}\left(n^{1.3}\right)=\left(2^{\lg n}\right)^{2}(1.3) \log _{5} n=\left(1.3 \log _{5} 2\right) n^{2} \lg n
$$

The second term is asymptotically greater than the first, so $f(n) \in O\left(n^{2} \log n\right)$.
4. The idea is to maintain the height of the merged skyline in a variable y as we increase x from $x=-\infty$ to $x=+\infty$. Whenever y changes, we record the pair (x, y). The loop invariant we maintain is that at step k (in the pseudocode k is $i+j-2$), we have produced the merged skyline for x ranging from $-\infty$ to the k th smallest x-coordinate of U and V, and that y is the height of the merged skyline at that x-coordinate.

```
Merge ( \(U, V\) )
    \(y=u y=v y=0\)
    \(i=j=1\)
    while \((i+j<|U|+|V|)\)
        \(u x=U[i] . x\) or \(\infty\) if \(i>|U|\)
        \(v x=V[j] . x\) or \(\infty\) if \(j>|V|\)
        if \(u x \leq v x\) then
                    \(x=u x\)
                    \(u y=U[i] . y\)
                    \(i++\)
        if \(u x \geq v x\) then
            \(x=v x\)
            \(v y=V[j] . y\)
            \(j++\)
        \(\operatorname{maxy}=\max (u y, v y)\)
        if \(\max y \neq y\) then
            \(y=\max y\)
            add \((x, y)\) to the end of \(S\)
    return \(S\)
```

5.

$$
(\log n)^{5}, \quad \sqrt{n}, \quad n^{2}(\log n)^{4}, \quad \sum_{i=1}^{n} i^{2}, \quad n^{3} \log n, \quad n^{\log _{2} n}, \quad 2^{n}, \quad n!, \quad 2^{\left(2^{n}\right)}
$$

6. (a) $T(n)=3\lfloor n / 2\rfloor$.
(b) $T(n)=\lg n$.
(c) $T(n)=n^{2}-n$.
