
CPSC 320 (Intermediate Algorithm Design and Analysis). Summer 2009.
Instructor: Dr. Lior Malka

Final Examination, July 24th, 2009

Student ID:

INSTRUCTIONS:

• There are 6 questions printed on pages 1− 7.

• Exam duration: 2 hours and 30 minutes.

• No aids are allowed, except for 1 letter size, double-sided cheat sheet.

• Start with easy questions and do not spend too much time on any section. The marks for each question
appear in square bold brackets next to the question.

• Before you answer a question, read all of its sections and make sure that you fully understand them.
You are always encouraged to ask for clarifications.

• When asked to give an algorithm, the intention is that you provide the asymptotically most efficient
implementation and describe it concisely. Unless otherwise stated, no pseudocode is necessary.

• Unless otherwise stated, when asked to provide lower or upper bounds, the intention is that you
provide the tightest bounds possible under worst case analysis.

• Answers are to be written on examination paper only. You can use another piece of paper as a
draft. If you also use the examination paper as a draft, do not forget to cross your notes.

• Do not use red pen.

Good Luck!

Q1

Q2

Q3

Q4

Q5

Q6

Total

1

1. [10] General. Let A be an unsorted array of n distinct integers. The algorithm SortAndPrint(A, i, j)
first sorts A and then prints all the elements between index i to index j in A. Describe an algorithm
that outputs the same numbers, possibly in a different order, but in time Θ(n). The input to your algo-
rithm is an unsorted array A of n distinct elements and indices i, j such that 1 ≤ i, j ≤ n. Informally
explain why your algorithm is correct and why it runs in time Θ(n).

Answer. Let A′ be the array A after sorting. The element A′[i] is an element of A whose order is i.
Thus, the required algorithm should output all the numbers in A whose order is between i to j. Intu-
itively, we achieve running time O(n) by using the Select algorithm and then printing everything
in between the end points. Formally, on input an array A and integer i, algorithm Select outputs the
i-th order element of A in time Θ(n). We store x =Select(A, i) and y =Select(A, j), and then
we scan A, printing each element A[k] if x ≤ A[k] ≤ y. Two invocations of Select are 2 · Θ(n)
and scanning A is Θ(n). The total is Θ(n).

2. [15] Recurrences.

(a) [5] Using the Master Theorem, solve T (n) = 9T (n
3)+n. Provide the values you are using (e.g.,

a, b, c, ε, f).

Answer. In this case we have a = 9, b = 3, f(n) = n, and nlogb(a) = n2. For ε = 1
2

we get that f(n) = O(nlogb(a)−ε), and therefore the first case of the master theorem applies.
That is, T (n) = Θ(nlogb(a)) = Θ(n2).

(b) [10] Using the Guess and Test Method, prove an upper bound on T (n) = 9T (bn
3 c) + n. Your

bound should apply to any n ≥ 1, and you can define T for the base case in any way.

Answer. We already know from the previous section that T (n) ≤ O(n2), so we try to prove
the induction step first, assuming T (k) ≤ k2 for all k < n:

T (n) = 9 · T (
n

3
) + n ≤ 9

(n

3

)2
+ n = n2 + n.

Since we need to show that T (n) ≤ n2, the induction step does not work and we need to revise
it. We try proving that T (n) ≤ n2 − n. The induction step is now

T (n) = 9 · T (
n

3
) + n ≤ 9

(
(
n

3
)2 − n

3

)
+ n = n2 − 2n ≤ n2 − n,

which coincides with the induction hypothesis. Turning our attention to the base case, we need
to find an n ∈ N for which T (n) = 9 · T (n

3) + n ≤ n2 − n holds. It turns out that if we take
T (0) = 0, then T (0) = 9 · T (0) + 0 ≤ 0 holds. We conclude that our guess T (n) ≤ n2− n can
be formally proved using induction by defining T (n) = 0 if n = 0 and T (n) = 9 · T (n

3) + n.

1

3. [20] Dynamic Programming. Let A be an array of numbers a1, a2, . . . , an ∈ N. The longest increas-
ing subsequence of A is the largest ordered subset of a1, a2, . . . , an in which each element is strictly
greater than the previous one. For example, the longest increasing subsequence of 5, 2, 8, 6, 3, 6, 9, 7
is 2, 3, 6, 9. The length of this subsequence is 4. We can compute the length of the longest increas-
ing subsequence by creating an array M , initializing it with default values, and then computing new
entries based on previous ones.

(a) [4] Explain why the problem of computing the length of the longest increasing subsequence can
be solved using dynamic programming.

Answer. There are two reasons: optimal substructure, and overlapping subproblems. The
optimal substructure is due to the fact that we can compute the length of the longest increasing
subsequence for the numbers a1, . . . , ai by looking at the values of the longest increasing sub-
sequence for the numbers a1, . . . , ai−1. The overlapping subproblems are due to the fact that at
stage i we recompute more than once the same solutions for subproblems from stages i′ < i.

(b) [8] Define the size of the array M , the initial default values of entries in M , and the recursive
formula that computes new entries in M based on previous ones.

Answer. We define M [i, j] to be the length of a longest increasing subsequence in the sub-
array A[1, . . . , i] such that the corresponding longest increasing subsequence ends at index j.1

The value of i ranges from 1 to n, and so is the value of j. Thus, M is of size n by n. Intuitively,
the length of the longest increasing subsequence in a1, . . . , ai is computed by looking at the val-
ues a1, . . . , ai−1. For each of these, we look at A[j] and decide whether A[i] could be appended
to the sequence or not. Then, we take the maximum over these values. Formally,

M [i, j] =

null if j > i or j = 0
1 if i = 1 and j = 1
max1≤k≤j(δk) otherwise,

where δk = M [i− 1, k] if A[k] ≥ A[i] and δk = M [i− 1, k] + 1 otherwise.

(c) [8] After computing M , what entry contains the length of the longest increasing subsequence in
A? Prove it using induction.

Answer. The index i for which M [n, j] takes the maximal value (over all 1 ≤ j ≤ n) is
the length of the longest increasing subsequence in A. Proof: by induction on i, we prove that
M [i, j] is the length of a longest increasing subsequence in A[1, . . . , i] whose corresponding
longest increasing subsequence ends at index j. The base case trivially holds when i = 1 be-
cause j is also 1. Assume the induction hypothesis for all numbers smaller than i. For the

1Notice that saying that the subsequence ends at index j is not the same as saying that the subsequence ends at the number A[j].

2

induction step, assume towards contradiction that there is j′ ≤ i and a longest increasing subse-
quence S in A[1, . . . , i] ending at index j′ such that M [i, j′] < |S|. (Case 1:) If A[j′] ≥ A[i],
then S is also a longest increasing subsequence in A[1, . . . , i − 1] ending at index j′ ≤ i − 1.
By the definition of M , it follows that M [i, j] = M [i − 1, j′] < |S|, and contradiction to the
induction hypothesis for i− 1. (Case 2:) If A[j′] < A[i], then S−{A[i]} is a longest increasing
subsequence in A[1, . . . , i − 1]. The length of this sequence is |S| − 1, and it ends at some
index j′ ≤ i − 1. By the definition of M , it follows that M [i − 1, j] < |S| − 1 for all j such
that A[j] < A[i]. Thus, in particular M [i − 1, j′] < |S| − 1, and contradiction to the induction
hypothesis for i− 1. The induction follows.

4. [15] Amortized Analysis. A stack is a data structure with the operation push(x), which pushes an
element into the stack, and pop(), which pops an element out of the stack. Let k ∈ N. A third
operation called debug is added to the stack. This operation prints the content of the stack to the
screen. It is triggered automatically by the stack after each sequence of k push or pop operations.

(a) [9] Assuming the size of the stack never exceeds k, describe the amortized cost of each operation
and use these costs to upper bound the total cost of n stack operations.

Answer. In a sequence of n stack operations there are at most n
k debug operations, each

costing at most k steps, for a total of n
k ·k = n steps. Thus, we assign $ 2 to the push operation,

$ 0 to the pop operation, $ 0 to the debug operation, and $ n to the stack (alternatively, we
can assign $ n to the first debug operation and $ 0 to the following debug operations, and
specify that the remaining credit goes to the stack). Now, in each sequence of n of the 3 opera-
tions, every push and pop operation costs 1 step. Thus, these operations are covered by the $ 2
assigned to the push operation. Debug operations are also covered by the stack because there
are n

k of them, each of cost at most k. Thus, the time complexity of a sequence of n operations
is 2n + n = O(3n).

(b) [3] Give a sequence of n stack operations that shows that your upper bound from Section (a) is
also a lower bound. Assume again that the size of the stack never exceeds k.

Answer. There are several sequences showing that the lower bound is Ω(n). For example,
a sequence of alternating push and pop operations requires 2 · n

2 = n steps.

(c) [3] Without limiting the size of the stack, give a lower bound on the cost of n stack operations.

Answer. Consider a sequence of n push operations. The first debug costs k steps, the
second costs 2k steps, and so on until the last debug, which costs n

k · k. The total cost is there-

fore lower bounded by k
∑n/k

i=1 i = n
2 (n

k + 1) = Ω(n2

k).

3

5. [20] Graph algorithms. Let G = 〈V, E〉 be an undirected connected graph with positive weights on
the edges and let s ∈ V . Recall that after invoking Dijkstra(G, s), each vertex v has a distance
value d(v). We define a graph G′ from G by adding exactly one arbitrary edge 〈u, v〉 of weight
wu,v > 0. That is, G′ = 〈V, E′〉, where E′ = E ∪ {〈u, v〉} and 〈u, v〉 /∈ E. In the new graph G′, we
denote by d′(v) the weight of a shortest path from any vertex v ∈ V to s.

(a) [6] Prove that the distance of at least one of u and v is unaffected by the new edge. Formally,
prove that either d′(u) = d(u) or d′(v) = d(v).

Answer. To prove this claim we show that if d′(u) < d(u), then d′(v) = d(v) (the other
case is symmetric). If d′(u) < d(u), then the shortest path from u to s must use the edge 〈u, v〉,
or else contradiction to the choice of d(u). Thus, the shortest path from u to s starts at u, goes
to v on the edge 〈u, v〉, and then continues to s on the shortest path from v to s. The path cannot
return to u because all the edges have positive weight. Since the shortest path from v to s in
G′ does not pass through u, the shortest path from v to s in G′ does not use the edge 〈u, v〉.
Hence, d′(v) < d(v) contradicts the choice of d(v) as the weight of a shortest path in G. Thus,
d′(v) = d(v).

(b) [6] Prove that if wu,v ≥ |d(u) − d(v)|, then the distance of u and v is unaffected by the new
edge (formally, d′(u) = d(u) and d′(v) = d(v)).

Answer. Assume towards contradiction that either d′(u) < d(u) or d′(v) < d(v). Sup-
pose d′(u) < d(u) (the other case is symmetric). As we saw in the previous section, the shortest
path from u to v in G′ starts at u, goes to v, and then continues to s on the shortest path from
v to s in G. Thus, d(u) > d′(u) = wu,v + d′(v) = wu,v + d(v). This leads to the inequality
wu,v < d(u)− d(v), and contradiction.

(c) [8] Prove that if wu,v ≥ |d(u)−d(v)|, then the distances of all vertices are unaffected (formally,
d(t) = d′(t) for any t ∈ V). Hint: show that no shortest path in G′ contains the edge 〈u, v〉.

Answer. Assume towards contradiction that there is t ∈ V such d′(t) < d(t), and consider the
shortest path pt,s from t to s in G′. This path must use the edge 〈u, v〉, or else contradiction to
the choice of d′(t). Suppose the path starts at t, passes through u, then uses the edge 〈u, v〉, and
continues on the shortest path pv,s from v to s. This implies that the weight of the shortest path
from u to s in G′ is wu,v +d′(v) = wu,v +d(v) < d(u), which contradicts wu,v ≥ |d(u)−d(v)|

6. [20] NP-Completeness. Consider the efficient compiler from 3-SAT to CLIQUE. The input to the
compiler is a 3-CNF formula ϕ, and the output is 〈G(ϕ), k〉, where G(ϕ) is a graph and k is a number.

(a) [3] We represent ϕ using an array A with 3 columns. The number of rows equals the number of
clauses in ϕ. For each j ∈ {1, 2, 3} and i, the value of A[i, j] is t (respectively, -t) if the literal

4

xt (respectively, xt) appears in the j-th position of the i−th clause. Draw A for the formula

ϕ = (x1 ∨ x3 ∨ x4) ∧ (x3 ∨ x5 ∨ x5) ∧ (x2 ∨ x7 ∨ x9) ∧ (x6 ∨ x2 ∨ x5) ∧ (x7 ∨ x8 ∨ x9)

Answer.

-1 3 4
3 5 -5
-2 7 9
6 2 5
-7 -8 9

(b) [10] Give pseudocode for the efficient compiler from 3-SAT to CLIQUE. On input an array A
representing a 3-CNF formula ϕ as in Section (a), the compiler outputs 〈B, k〉, where B is a
matrix representation of the graph G(ϕ) and k is a number. Briefly and informally explain what
your algorithm does and why it is correct.

Answer. The algorithm numbers entry 〈i, j〉 in A as vertex 3(i− 1) + j in B. It then connects
all 3n vertices, unless the literals corresponding to the entries are complements, or they are in
the same row. Correctness follows from the fact that in G(ϕ) we do not connect complementing
literals or literals in the same clause in ϕ. Thus, A (which represents ϕ) has a satisfying assign-
ment if and only if B (which represents G(ϕ)) has a clique of size k.

Compiler(A)
n = A.rows
B is a 3n by 3n matrix
For i = 1 to n

For j = 1 to 3 // the number 3(i− 1) + j is a label for a vertex in G(ϕ)
For i′ = 1 to n

For j′ = 1 to 3 // the number 3(i′ − 1) + j′ is a label for a vertex in G(ϕ)
if i 6= i′ and A[i, j] 6= −A[i′, j′]

B[3(i− 1) + j, 3(i′ − 1) + j′] = 1
return 〈B,n〉

(c) [2] What is the running time of your compiler?

Answer. On input a 3 by n matrix A of length m = 3n, the compiler scans the entire matrix
A for each cell of A, resulting in time 3n · 3n, which is Θ(m2).

(d) [5] Assume that your compiler from Section (b) is correct. Denote the length of the matrix A by
m, and the length of 〈B, k〉 by n. Prove that if there is c ∈ N such that CLIQUE can be solved
in time nc, then there is a ∈ N such that 3-SAT can be solved in time O(ma). Prove that your

5

algorithm is correct and provide the value of a.

Answer. We define an algorithm that on input a 3-CNF ϕ (represented as a matrix A of
size m) compiles A into 〈G(ϕ), k〉 (represented as a pair 〈B, k〉 of size n = O(m2)) and then
outputs the answer of the CLIQUE algorithm on 〈G(ϕ), k〉. The running time of the CLIQUE

algorithm is O(nc) = O((m2)c) = O(m2c), which implies that the running time for our algo-
rithm is O(m2) + O(m2c) = O(m2c). Thus, a = 2c. To prove correctness, notice that if ϕ
is satisfiable, then G(ϕ) has a clique of size k, which implies that the CLIQUE algorithm will
output 1. Conversely, if ϕ is not satisfiable, then G(ϕ) does not have a clique of size k, which
implies that the CLIQUE algorithm will output 0. Hence, our algorithm solves 3-SAT.

6

