
CPSC 314
Assignment 2

Due Monday November 3, 2014

Answer the questions in the spaces provided on the question sheets. If you
run out of space for an answer, use separate pages and staple them to your

assignment.

Name:

Student Number:

Question 1 / 5
Question 2 / 9
Question 3 / 6
Question 4 / 10
Question 5 / 30
TOTAL / 60

1



CPSC 314 Assignment 2

1. (5 points) Scan Conversion
Give the pseudocode for scan converting the ellipse shown below. It is centred at xc, yc,
has a major axis length of 2a, a minor axis length of 2b, and contains a circular hole of
radius r. Use implicit equations to develop your solution.

Page 2 of 8



CPSC 314 Assignment 2

2. Scan Conversion and Interpolation

A triangle has device coordinates P1(10, 10), P2(80, 20), and P3(40, 90). You wish to
interpolate a value v for point P (60, 30), given the value of v at the vertices: v1 =
40, v2 = 20, v3 = 30.

(a) (1 point) Sketch the triangle and the point P .

(b) (4 points) Develop a plane equation for v as a function of x and y. You can
use Matlab or an online linear equation calculator (Google this) to solve a set of
linear equations for your plane parameters. Compute v for point P using the plane
equation.

(c) (4 points) Compute the barycentric coordinates for point P . Compute v for point
P using the Barycentric coordinates.

Page 3 of 8



CPSC 314 Assignment 2

3. (6 points) Culling

For the following scene, shown as a side-view of VCS, list which polygons would be culled
by (a) view frustrum culling, and (b) back-face culling. Assume that each segment with
a letter represents a face. Consider both types of culling independently of each other.

Page 4 of 8



CPSC 314 Assignment 2

4. Clipping
Suppose that a perspective view-volume is defined by near=1, far=4, bot=-1, top=1,

left=-1, far=1. Consider the line defined by the VCS coordinates P1(2, 0, 5)P2(−1, 2, 2).

(a) (3 points) Sketch a side-view and top-view of the view-volume and the line.

(b) (3 points) Determine if view-frustum culling can be applied to the line, i.e., if both
vertices are “outside” with respect to any one of the six view frustum planes. Use
the implicit plane equations.

(c) (1 point) Based on your work for the question above, determine the view-frustum
planes that the line intersects.

(d) (3 points) Compute the final clipped version of line P1P2 in VCS. Show your work.

Page 5 of 8



CPSC 314 Assignment 2

5. Coding: Texture mapping, vertex shaders, and fragment shaders

The objective of this coding question is to gain some hands-on experience with using
texture mapping, vertex shaders, and fragment shaders. You will be starting with tem-
plate code (see the lectures web page for the link) and making a number of changes to
it. A screen shot of what the final solution might look like is shown below.

Complete the following modifications to the template code. You need not exactly follow
the given order, as most of the modifications are independent of each other.

(a) (5 points) Examine the vertex shader (mesh vs.glsl) and the fragment shader
(mesh fs.glsl) for the available input variables, which are listed at the beginning
of the shader. In the space below, sketch a diagram with illustrated blocks for
the javascript application code, the GPU memory, the vertex shader, the fragment
shader, and the final image buffer. On this diagram, list the attribute, uniform, and
varying variables and illustrate between which blocks they are communicated. Also
illustrate the default output variables for the vertex shader and fragment shader.
Include your diagram below as part of your paper assignment handin.

Page 6 of 8



CPSC 314 Assignment 2

(b) (2 points) The ground texture is modeled using a textured plane, constructed with
four vertices, which is defined in a2.js. Change the texture coordinates assigned
to the four vertices such that the texture becomes much finer than it currently is,
i.e., so that it repeats many more times.

(c) (2 points) Change the texture map that is used for the bunny from the UBC logo
to something more appropriate. See the loadTextures() function for where the
texture map file names are specified. Note that the dimensions of images used for
texture mapping must by powers of 2, i.e., 256x256, 512x512, etc. If you like, use
psychedelic.png. Or, better yet, take any image you like, and resize it using your
favorite image resizing application. This is optional, but it can count as one of the
“extras” you do for the last step.

(d) (4 points) Now you will be changing the texture mapping for the faces of the cube.
First, view the image ubcTexture.png, which is currently used to texture map
the cube. You should change the texture coordinates for each of the cube faces
(see a2.js) in order to map the four individual sub-images in that texture map
to individual faces, in a way that makes sense, i.e., upright and legible. See the
solution image at the start of this question for an example.

(e) (3 points) Now take a look inside the fragment shader, (mesh fs.glsl). The ulti-
mate output of the fragment shader is gl FragColor. Comment out the last line
and add a new line that assigns gl FragColor = u FragColor;. Observe what
this does, i.e., produce a simple flat-shaded rendering without textures. Now the
goal for this step is to give your bunny a ’colour tinted’ texture. Look for the code
in drawScene() where u FragColor is used before drawing. Change the colour
assignments to something distinct and observe the resulting change in your ’flat
shaded’ rendered version. Now compute the product of the default colour with the
texture-map colour and use that as the colour for the fragment. Note that the
shading language allows for component-wise multiplication using a statement such
as: vec4 c = a*b;, where a and b are also of type vec4. You should now be able
to produce a texture mapped bunny with a desired color tint.

(f) (3 points) We’ll now use the fragment shader to produce an elliptical viewing win-
dow. In the supplied fragment shader, you are already given the NDCS coordinates
of the fragment being rendered. Use this to evaluate an implicit function, f, for a
circle, which will appear as an ellipse on screen because of the aspect ratio. Replac-
ing the default f=1.0; line with your function should result in the fragment being
assigned the colour black when it is outside the elliptical border.

(g) (3 points) We’ll now be making changes to the vertex shader. The goal in this
step is to distort the geometry in the vertex shader. First, you could simply
move the geometry as a function of time, given by u DistortionTime. Thus
adding an offset to one of the x,y,z components, in model space, according to
DistortionAmp*sin(c2*DistortionTime) will result in the vertex shader adding a
sinusoidal translation to the entire model over time. While all the objects are drawn
using the same vertex shader, only the bunny should move because DistortionAmp

Page 7 of 8



CPSC 314 Assignment 2

is set to zero before the cube and ground plane are drawn. Now, further change the
distortion so that the offset also varies as a function of space,
i.e., DistortionAmp*sin(c2*DistortionTime + c3*x), where x could be any of
the point’s x,y,z model coordinates. Hitting the spacebar will start and stop the
advancement of DistortionTime.

(h) (3 points) We’ll now introduce a simple model of colored fog using the fragment
shader. You will see some template code in the fragment shader that blends the fog
colour, white by default, with the computed fragment colour in order to compute a
final pixel colour. First, understand the visual effect by setting fogAmount=0.5 and
also experimenting with fog colours other than white. Now compute fogAmount
as a linear function of the viewing distance, which you have access to because
v ViewPosition is provided as a varying variable, and this represents the VCS
coordinates for the current fragment. You will need to further clamp fogAmount to
within the range [0,1]. This will mean that beyond some distance, the fragment
will be completely fog coloured, while closer than some distance, the fragment will
have no fog colour at all.

(i) (5 points) Develop your ideas of your own for augmenting the scene. You could
add more bunnies, make the fog color vary with time and space, add some motion,
etc.

Submit your code using handin cs314 a2.
Include a README.txt file that contains: (a) your name; (b) your student number; (c)
any comments and explanations that you wish to include.

Page 8 of 8


