
© Michiel van de Panne

University of
British Columbia

Visibility

•  view volume culling
•  view volume clipping
•  backface culling
•  z-buffer occlusion test
•  painter’s algorithm & BSP trees
•  occlusion culling

•  raytracing

© Michiel van de Panne

University of
British Columbia

View Volume Culling
polygons outside the view volume ?

© Michiel van de Panne

University of
British Columbia

View Volume Culling
objects outside the view volume ?

© Michiel van de Panne

University of
British Columbia

View Volume Clipping
polygons partly outside of view volume ?

© Michiel van de Panne

University of
British Columbia

View Volume Clipping
Sutherland Hodgeman clipping

© Michiel van de Panne

University of
British Columbia

Clipping in VCS

VCS

© Michiel van de Panne

University of
British Columbia

Clipping in NDCS

NDCS

© Michiel van de Panne

University of
British Columbia

Clipping in CCS

NDCS:
 CCS:

© Michiel van de Panne

University of
British Columbia

Line-Plane intersection

© Michiel van de Panne

University of
British Columbia

Backface Culling in VCS

© Michiel van de Panne

University of
British Columbia

Backface Culling in NDCS

© Michiel van de Panne

University of
British Columbia

Computing Surface Normals

Method 1

Method 2

© Michiel van de Panne

University of
British Columbia

Occlusion

•  image space algorithms:
–  operate on pixels or scan-lines
–  visibility resolved to the precision of the display
–  e.g.: Z-buffer

•  object space algorithms:
–  explicitly compute visible portions of polygons
–  painter’s algorithm: depth-sorting, BSP trees

view occluded by objects in front of a given
pixel or polygon ?

© Michiel van de Panne

University of
British Columbia

Z-buffer
store (r,g,b,z) for each pixel

for all i,j {
 Depth[i,j] = MAX_DEPTH
 Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
 project vertices into screen-space, i.e., DCS
 for all pixels in P {
 if (Z_pixel < Depth[i,j]) {
 Image[i,j] = C_pixel
 Depth[i,j] = Z_pixel
 }
 }
}

© Michiel van de Panne

University of
British Columbia

Z-buffer
•  hardware support
•  limitations:

© Michiel van de Panne

University of
British Columbia

Painter’s Algorithm

© Michiel van de Panne

University of
British Columbia

Binary Space Partition (BSP)
trees
•  object-space method
•  produces a back-to-front ordering
•  build the BSP tree once
•  traverse the BSP in a view-dependent fashion

© Michiel van de Panne

University of
British Columbia

BSP trees (example)

© Michiel van de Panne

University of
British Columbia

Building a BSP tree

BSPtree *BSPmaketree(polygon list) {
 choose a polygon as the tree root
 for all other polygons {
 if polygon is in front, add to front list
 if polygon is behind, add to behind list
 else split polygon and add one part to each list
 }
 BSPtree = BSPcombinetree(BSPmaketree(front list),
 root, BSPmaketree(behind list))
}

© Michiel van de Panne

University of
British Columbia

Using a BSP tree
producing a back-to-front ordering

DrawTree(BSPtree) {
 if (eye is in front of root) {
 DrawTree(BSPtree->behind)
 DrawPoly(BSPtree->root)
 DrawPoly(BSPtree->front)
 } else {
 DrawTree(BSPtree->front)
 DrawPoly(BSPtree->root)
 DrawTree(BSPtree->behind)
 }
}

© Michiel van de Panne

University of
British Columbia

Occlusion Culling

•  occlusion queries
-  virtual render of bounding box

•  precomputed visibility tables

–  store a list of visible cells

•  horizon maps
–  for terrain models

© Michiel van de Panne

University of
British Columbia

Visibility in Practice:
WebGL, OpenGL

•  view volume culling
•  view volume clipping
•  backface culling
•  z-buffer occlusion test
•  painter’s algorithm & BSP trees
•  occlusion culling

© Michiel van de Panne

University of
British Columbia

Raycasting and Raytracing

•  for each pixel p
–  construct ray r from eye through p
–  intersect r with all polygons or objects
–  color p according to closest surface

alternative to projective rendering

© Michiel van de Panne

University of
British Columbia

Transforming Normals

Using h=0

Problem

© Michiel van de Panne

University of
British Columbia

Transforming Normals

develop a normal transformation matrix:

