Texture Mapping

« real life objects have
nonuniform colors,
normals

* to generate realistic
objects, reproduce
coloring & normal
variations = texture

* can often replace
complex geometric
details

Texture Mapping

* hide geometric simplicity
* images convey illusion of geometry
* map a brick wall texture on a flat polygon
* create bumpy effect on surface

* usually:
associate 2D information with a surface in 3D

* point on surface < point in texture
+ “paint” image onto polygon



Color Texture Mapping

 define color (RGB) for each point on object surface
+ from an image:

* surface texture map

« affine or projective texture
 other:

* volumetric texture

» procedural texture
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Texture Lookup:@

Tiling and Clamping 5
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Texture Objects and Binding

+ texture object

» an OpenGL data type that keeps textures resident in memory and
provides identifiers to easily access them

» provides efficiency gains over having to repeatedly load and reload a
texture

« various strategies for managing texture memory and texture cache
 texture binding

» which texture to use right now

« switch between preloaded textures
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Reconstruction

* how to deal with:
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MIPmaps

* multum in parvo -- many things in a small place

» prespecify a series of prefiltered texture maps of decreasing
resolutions

* requires more texture storage
» avoid shimmering and flashing as objects move
¢ gluBuild2DMipmaps

+ automatically constructs a family of textures from original
texture size down to 1x1

without
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MIPmap storage

* only |/ more space required
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Other uses for Textures

 usually provides colour, but ...

+ can also use to control other material/object
properties

+ surface normal (bump mapping)
» reflected color (environment mapping)
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Bump Mapping: Normals As Texture

» object surface often not smooth — to recreate correctly
need complex geometry model

- can control shape “effect” by locally perturbing surface
normal

* random perturbation
« directional change over region
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Embossing

« at transitions
* rotate point’s surface normal by 6 or - 6

Displacement Mapping

* bump mapping gets
silhouettes wrong
» shadows wrong too
+ change surface
geometry instead
+ only recently
available with
realtime graphics

* need to subdivide
surface
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Environment Mapping

» cheap way to achieve reflective effect
* generate image of surrounding
* map to object as texture

Environment Mapping

» used to model object that reflects
surrounding textures to the eye

* movie example: cyborg in Terminator 2
« different approaches

* sphere, cube most popular

« others possible too
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Sphere Mapping

* texture is distorted fish-eye view
» point camera at mirrored sphere

» spherical texture mapping creates texture coordinates that
correctly index into this texture map

Cube Mapping

* 6 planar textures, sides of cube

* point camera in 6 different directions, facing
out from origin




Cube Mapping
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Cube Mapping

« direction of reflection vector r selects the face of the cube to
be indexed

+ co-ordinate with largest magnitude
* e.g., the vector (-0.2, 0.5, -0.84) selects the —Z face

« remaining two coordinates (normalized by the 3 coordinate)
selects the pixel from the face.
* e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

« difficulty in interpolating across faces
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Volumetric Texture

+ define texture pattern over 3D
domain - 3D space containing
the object

« texture function can be
digitized or procedural

« for each point on object
compute texture from point
location in space

* e.g., ShaderToy
» computing is cheap,
memory access is expensive !

2D 3D
mapping mapping

Procedural Texture Effects: Bombing

» randomly drop bombs of various shapes, sizes and
orientation into texture space (store data in table)
« for point P search table and determine if inside shape
« if so, color by shape
« otherwise, color by objects color
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Perlin Noise: Procedural Textures

 several good explanations
* http://www.noisemachine.com/talk1
 http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
* http://www.robo-murito.net/code/perlin-noise-math-fag.html

http://mrl.nyu.edu/~perlin/planet/ 29

Perlin Noise: Turbulence

Sum of Noise Functions = ( Perfin Noise )

« multiple feature sizes

+ add scaled copies of noise M“\

Amplitude - 128 Amplitude : 64 Ampltude : 32
frequency : 4 frequency |8 frequency : 16
A~
7
Amplitude : 16 Amplitude : 8 Ampltude - 4
frequency : 32 frequency : 64 frequency : 128
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Perlin Noise: Turbulence

« multiple feature sizes
+ add scaled copies of noise




