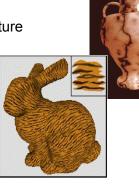
Texture Mapping

- real life objects have nonuniform colors, normals
- to generate realistic objects, reproduce coloring & normal variations = texture
- can often replace complex geometric details

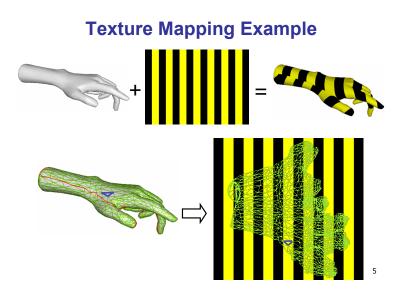
1

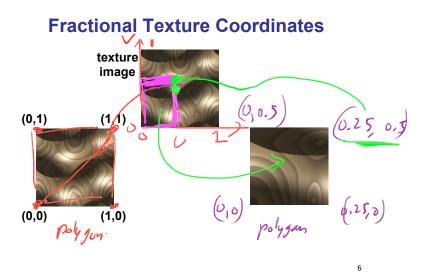
2

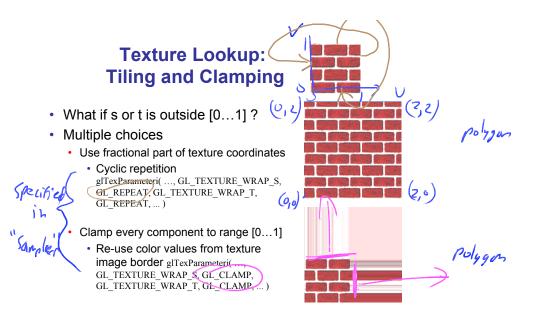

Texture Mapping

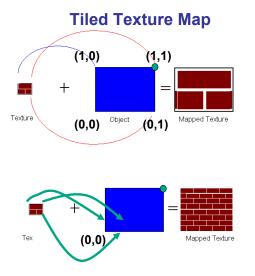
- hide geometric simplicity
 - images convey illusion of geometry
 - map a brick wall texture on a flat polygon
 - create bumpy effect on surface
- usually:
 - associate 2D information with a surface in 3D
 - point on surface ↔ point in texture
 - "paint" image onto polygon

Color Texture Mapping

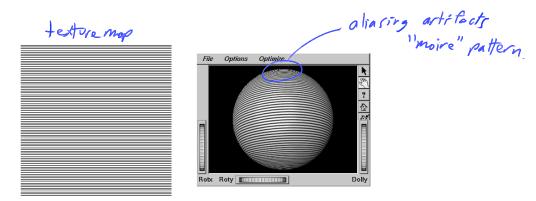

- define color (RGB) for each point on object surface
- from an image:
 - surface texture map
 - affine or projective texture
- other:
 - volumetric texture
 - procedural texture






3

rendered scene. (up,v) (up,



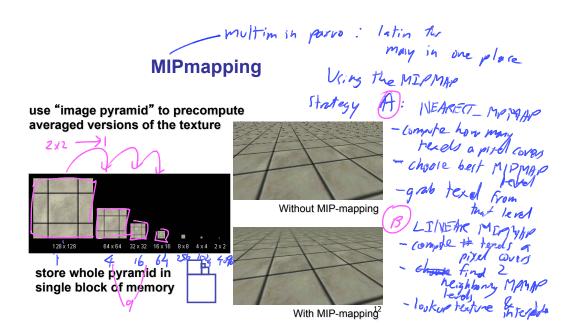
Texture Objects and Binding

- texture object
 - an OpenGL data type that keeps textures resident in memory and provides identifiers to easily access them
 - provides efficiency gains over having to repeatedly load and reload a texture
 - · various strategies for managing texture memory and texture cache
- texture binding
 - which texture to use right now
 - switch between preloaded textures

Reconstruction

(image courtesy of Kiriakos Kutulakos, U Rochester)

10

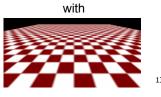

Reconstruction

how to deal with:

• pixels that are much larger than texels? - pixel texel namest to texels pixel sentes "minification" pixels are larger than tends

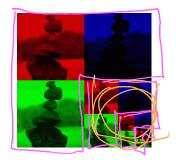
• pixels that are much smaller than texels ?

"magnitution" pixels are smaller than texels texels __pixels 11



MIPmaps

• multum in parvo -- many things in a small place

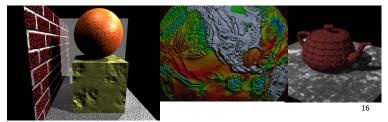

- prespecify a series of prefiltered texture maps of decreasing resolutions
- requires more texture storage
- · avoid shimmering and flashing as objects move
- gluBuild2DMipmaps
 - automatically constructs a family of textures from original texture size down to 1x1

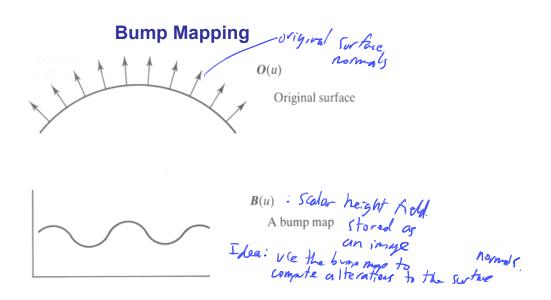
MIPmap storage

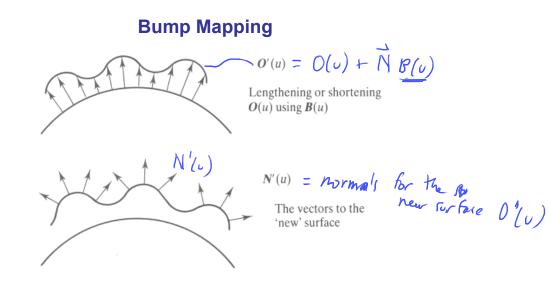
• only 1 more space required

 $1 + \frac{1}{4} + \frac{1}{76} + \frac{1}{64} + \dots$ $1 + r + r^{2} + r^{3} + \dots$ where $r = \frac{1}{74}$ $Sum = \frac{1}{1-r} = \frac{1}{1-\frac{1}{4}} = \frac{1}{\frac{3}{4}}$

Other uses for Textures

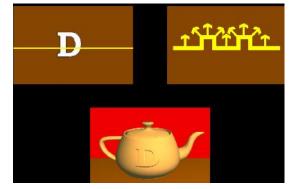

- usually provides colour, but ...
- can also use to control other material/object
 properties
 - surface normal (bump mapping)
 - reflected color (environment mapping)



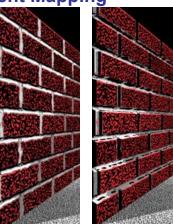

15

Bump Mapping: Normals As Texture

- object surface often not smooth to recreate correctly need complex geometry model
- can control shape "effect" by locally perturbing surface normal
 - random perturbation
 - directional change over region



Embossing


- at transitions
 - rotate point's surface normal by θ or θ

19

Displacement Mapping


- bump mapping gets silhouettes wrong
 - shadows wrong too
- change surface geometry instead
 - only recently available with realtime graphics
 - need to subdivide surface

Environment Mapping

- · cheap way to achieve reflective effect
 - generate image of surrounding
 - map to object as texture

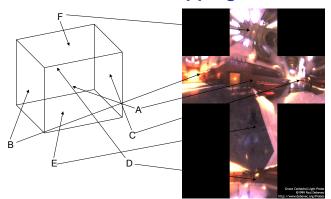
21

Environment Mapping

- used to model object that reflects surrounding textures to the eye
 - movie example: cyborg in Terminator 2
- different approaches
 - sphere, cube most popular
 - others possible too

Sphere Mapping

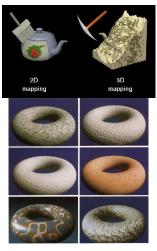
- texture is distorted fish-eye view
 - point camera at mirrored sphere
 - spherical texture mapping creates texture coordinates that correctly index into this texture map



Cube Mapping

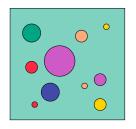
- 6 planar textures, sides of cube
 - point camera in 6 different directions, facing out from origin

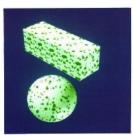
Cube Mapping


25

Cube Mapping

- direction of reflection vector r selects the face of the cube to be indexed
 - co-ordinate with largest magnitude
 e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face
 - remaining two coordinates (normalized by the 3rd coordinate) selects the pixel from the face.
 e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).
- · difficulty in interpolating across faces


Volumetric Texture

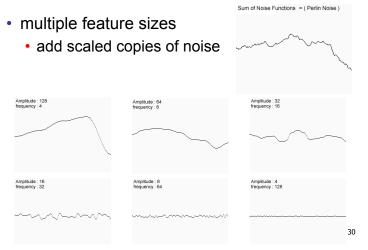

- define texture pattern over 3D domain - 3D space containing the object
 - texture function can be digitized or procedural
 - for each point on object compute texture from point location in space
- e.g., ShaderToy
- computing is cheap, memory access is expensive !

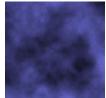
Procedural Texture Effects: Bombing

- randomly drop bombs of various shapes, sizes and orientation into texture space (store data in table)
 - for point P search table and determine if inside shape
 if so, color by shape
 - otherwise, color by objects color

Perlin Noise: Procedural Textures

several good explanations


- http://www.noisemachine.com/talk1
- http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
- http://www.robo-murito.net/code/perlin-noise-math-faq.html


http://mrl.nyu.edu/~perlin/planet/ 29

Perlin Noise: Turbulence

Perlin Noise: Turbulence

multiple feature sizes
add scaled copies of noise

