Texture Mapping

« real life objects have
nonuniform colors,
normals

* to generate realistic
objects, reproduce
coloring & normal
variations = texture

* can often replace
complex geometric
details

Texture Mapping

* hide geometric simplicity
* images convey illusion of geometry
* map a brick wall texture on a flat polygon
* create bumpy effect on surface

* usually:
associate 2D information with a surface in 3D

* point on surface < point in texture
+ “paint” image onto polygon

Color Texture Mapping

 define color (RGB) for each point on object surface
+ from an image:

* surface texture map

« affine or projective texture
 other:

* volumetric texture

» procedural texture

Texture Mapping
rerded Sceng | (rh Yextwo mas

= vds 4y
We V—(/)L_o\

Z HV: ’lv’}fj

—

e Faraasas
.—-._1._-_!-5 , V) parameterization in
fﬁ* OpenGL

Y
\7\\‘/ \+ “‘l“l
<

Texture Mapping Example

-

s
x

i

4

IS N
AR EOS BN, |

I %
I /7 IS N

Fraction(a/l Texture Coordinates

1) b ,

p"i?/ov; r®

Texture Lookup:@

Tiling and Clamping 5

. What ifs or tis outside [0...1] 7 (¢ i (52/

. . BN
* Multiple choices FRrRrRra /7° !yan
+ Use fractional part of texture coordinates .----.
+ Cyclic repetition B R T T
glTexParareteri(..., GL_TEXTURE_WRAP_S, FRrRFRras
{,ﬂe Lfﬁ' REPEAT/GL_TEXTURE_WRAP_T, je)) (e @ c)
. GL_REPEAT, ...) (O,J 4
b
i\ ¢ ¢ Clamp every component to range [0...1]
fdlrl-p {q, . Re-use color values from texture i /70/} s
image border glTexParameteri -_l— ?
GL_TEXTURE_WRAP_S, GL_CLAMP, B EREE
GL_TEXTURE_WRAP_T, GE-CLA) RR
= =

Tiled Texture Map

Texture Object Mapped Texture
(0,0) 1)

Mapped Texture

Texture Objects and Binding

+ texture object

» an OpenGL data type that keeps textures resident in memory and
provides identifiers to easily access them

» provides efficiency gains over having to repeatedly load and reload a
texture

« various strategies for managing texture memory and texture cache
 texture binding

» which texture to use right now

« switch between preloaded textures

Reconstruction

'a () 71'79’ /L
+etore gy alas - e
e moire” putfes,

Rotx Roty

(image courtesy of Kiriakos Kutulakos, U Rochester)
10

Reconstruction

* how to deal with:

* pixels that are much larger than texels? ﬂr')(e/
“wini Fication " TEE el Aoe,
. H e,
Py gre lgger ., L el et
IL(;V/J' \ i — e
* pixels that are much smaller than texels ?
. /
l"‘”ﬁi"" /"‘*ffd';;/ | —texsds
pi3ets w2 geoltr g, —)
Pexeds I
11
/Mu}‘]'/m ih e 0 el Ao
Py a pne /4
MIPmappin i
PPINg Uins Te M2opmipe
use “image pyramid” to precompute ”"”hﬁy @; NEAR=T_ 1 M 42

“(W”/Vf‘e— A‘ﬂ"tr’ W
MW A,ﬂf (bVM
T Chyole berf M Pmpo

averaged versions of the texture

Without MIP-mapping
2 z,mtéx ’“’fj%}/
e B [I’n" GJved
store whole pyramid in i ~ 5“9:#4. ﬁn,(2
single block%\ jmory MA«»} I‘?,%M
\leako/}-afyae hrﬁ’)/"

With MIP-mappind’

MIPmaps

* multum in parvo -- many things in a small place

» prespecify a series of prefiltered texture maps of decreasing
resolutions

* requires more texture storage
» avoid shimmering and flashing as objects move
¢ gluBuild2DMipmaps

+ automatically constructs a family of textures from original
texture size down to 1x1

without

13

MIPmap storage

* only |/ more space required

14

Other uses for Textures

 usually provides colour, but ...

+ can also use to control other material/object
properties

+ surface normal (bump mapping)
» reflected color (environment mapping)

15

Bump Mapping: Normals As Texture

» object surface often not smooth — to recreate correctly
need complex geometry model

- can control shape “effect” by locally perturbing surface
normal

* random perturbation
« directional change over region

Bump Mapping 071G 05/ (oA
/O(u) el

Original surface

B(u) - f@/ﬂr }I&}h/‘ /gl‘/q

W AP (hored o
_ an .
'Ll{ﬁa«" Vie 7‘L,_ évw}. ,Mﬁ;i /l"""”“/l’
Compate a“‘k'ﬂ:;’?o:’ b fo e

Bump Mapping
-~

_—ow= 06) - N)

Lengthening or shortening
O(u) using B(u)

N'.) "
The vectors to the hew oo) Zu)

/\ ‘new’ surface

Embossing

« at transitions
* rotate point’s surface normal by 6 or - 6

Displacement Mapping

* bump mapping gets
silhouettes wrong
» shadows wrong too
+ change surface
geometry instead
+ only recently
available with
realtime graphics

* need to subdivide
surface

19

20

Environment Mapping

» cheap way to achieve reflective effect
* generate image of surrounding
* map to object as texture

Environment Mapping

» used to model object that reflects
surrounding textures to the eye

* movie example: cyborg in Terminator 2
« different approaches

* sphere, cube most popular

« others possible too

21

22

Sphere Mapping

* texture is distorted fish-eye view
» point camera at mirrored sphere

» spherical texture mapping creates texture coordinates that
correctly index into this texture map

Cube Mapping

* 6 planar textures, sides of cube

* point camera in 6 different directions, facing
out from origin

Cube Mapping

25

Cube Mapping

« direction of reflection vector r selects the face of the cube to
be indexed

+ co-ordinate with largest magnitude
* e.g., the vector (-0.2, 0.5, -0.84) selects the —Z face

« remaining two coordinates (normalized by the 3 coordinate)
selects the pixel from the face.
* e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

« difficulty in interpolating across faces

26

Volumetric Texture

+ define texture pattern over 3D
domain - 3D space containing
the object

« texture function can be
digitized or procedural

« for each point on object
compute texture from point
location in space

* e.g., ShaderToy
» computing is cheap,
memory access is expensive !

2D 3D
mapping mapping

Procedural Texture Effects: Bombing

» randomly drop bombs of various shapes, sizes and
orientation into texture space (store data in table)
« for point P search table and determine if inside shape
« if so, color by shape
« otherwise, color by objects color

@ o°
.0,

o O

28

Perlin Noise: Procedural Textures

 several good explanations
* http://www.noisemachine.com/talk1
 http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
* http://www.robo-murito.net/code/perlin-noise-math-fag.html

http://mrl.nyu.edu/~perlin/planet/ 29

Perlin Noise: Turbulence

Sum of Noise Functions = (Perfin Noise)

« multiple feature sizes

+ add scaled copies of noise M“\

Amplitude - 128 Amplitude : 64 Ampltude : 32
frequency : 4 frequency |8 frequency : 16
A~
7
Amplitude : 16 Amplitude : 8 Ampltude - 4
frequency : 32 frequency : 64 frequency : 128

A A A P PP P A e S

30

Perlin Noise: Turbulence

« multiple feature sizes
+ add scaled copies of noise

