Lighting

Lighting/Shading

- Goal
- Model the interaction of light with surfaces to render realistic images
- Generate per (pixel/vertex) color

- Light sources
- Location, type \& color
- Surface materials
- How surfaces reflect light
- Transport of light
- How light moves in a scene

- Viewer position
- Local illumination - Fast
- Ignore real physics, approximate the look
- Interaction of each object with light
- Compute on surface (light to viewer)
- Global illumination - Slow
- Physically based
- Interactions between objects

The big picture (basic)

- Light: energy in a range of wavelengths
- White light - all wavelengths
- Colored (e.g. red) - subset of wavelengths
- Surface "color" - reflected wavelength
- White - reflects all lengths
- Black - absorbs everything
- Colored (e.g. red) absorbs all but the reflected color
- Multiple light sources add (energy sums)

Materials

- Surface reflectance:
- Illuminate surface point with a ray of light from different directions
- How much light is reflected in each direction?

Reflectance Distribution Model

- Most surfaces exhibit complex reflectances
- Vary with incident and reflected directions.
- Model with combination-known as BRDF
- BRDF: Bidirectional Reflectance Distribution Function

- Depends on angle of incidence: angle between surface normal and incoming light
- $\mathrm{I}_{\text {diffuse }}=\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\text {light }} \cos \theta$
- In practice use vector arithmetic
- $\mathrm{I}_{\text {diffuse }}=\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\text {light }}(\mathrm{n} \cdot \mathbf{l})$
- Always normalize vectors used in lighting
- n, I should be unit vectors
- Scalar (B/W intensity) or 3-tuple (color)
- k_{d} : diffuse coefficient, surface color
- $\mathrm{I}_{\text {light }}$: incoming light intensity
- $\mathrm{I}_{\text {diffuse }}$: outgoing light intensity (for diffuse reflection)

Diffuse Lighting Examples

- Lambertian sphere from several lighting angles:

- need only consider angles from 0° to 90°
- Geometry of specular (perfect mirror) reflection
- Snell's law

Empirical Approximation

- Snell's law = perfect mirror-like surfaces
- But ..
- few surfaces exhibit perfect specularity
- Gaze and reflection directions never EXACTLY coincide
- Expect most reflected light to travel in direction predicted by Snell's Law
- But some light may be reflected in a direction slightly off the ideal reflected ray
- As angle from ideal reflected ray increases, we expect less light to be reflected
- Angular falloff

- How to model this falloff?

Phong Lighting

- Most common lighting model in computer graphics - (Phong Bui-Tuong, 1975)

Alternative Model

- Blinn-Phong model (Jim Blinn, 1977)
- Variation with better physical interpretation

$I_{\text {specular }}=k_{s} \cdot(\mathbf{h} \cdot \mathbf{n})^{1 / r} \cdot I_{\text {light }} ;$ with $\mathbf{h}=(\mathbf{(\mathbf { l } + \mathbf { v })} / 2$ the Phory
model.

- Light is linear
- If multiple rays illuminate the surface point the result is just the sum of the individual reflections for each ray

$$
\sum_{p} I_{p}\left(k_{d}\left(n \cdot l_{p}\right)+k_{s}\left(r_{p} \cdot v\right)^{n}\right)
$$

Ambient Light

- Non-directional light - environment light
- Object illuminated with same light everywhere
- Looks like silhouette
- Illumination equation $I=I_{a} k_{a}$
- I_{a} - ambient light intensity
- $k_{a}-$ fraction of this light reflected from surface

- Point Light
- light originates at a point

- Directional Light (point light at infinity)
- light rays are parallel
- Rays hit a planar surface at identical angles
- Spot Light
- point light with limited angles

Light Source Falloff

- Quadratic falloff (point- and spot lights)
- Brightness of objects depends on power per unit area that hits the object
- The power per unit area for a point or spot light decreases quadratically with distance

Light and Material Specification

- Light source: amount of RGB light emitted
- value = percentage of full intensity, e.g., (1.0,0.5,0.5)
- every light source emits ambient, diffuse, and specular light
- Materials: amount of RGB light reflected
- value represents percentage reflected e.g., (0.0,1.0,0.5)
- Interaction: multiply components
- Red light $(1,0,0) \times$ green surface $(0,1,0)=$ black ($0,0,0$)

When to apply Lighting Model?

- per polygon
- "flat shading"
- per vertex
- "Gouraud shading"
- per pixel
- "per pixel lighting", "Phong shading"

Colored Wireframes

Ambient Lighting

Per Pixel Shading

31

Curved Surfaces with Per-pixel Shading

Displacement Mapping

35

Reflection Mapping

