

Lighting

Lighting/Shading

- Goal
 - Model the interaction of light with surfaces to render realistic images
 - Generate per (pixel/vertex) color

Factors

- Light sources
 - Location, type & color
- Surface materials
 - How surfaces reflect light
- Transport of light
 - How light moves in a scene
- Viewer position

Illumination Models/Algorithms

- Local illumination Fast
 - Ignore real physics, approximate the look
 - Interaction of each object with light
 - Compute on surface (light to viewer)
- Global illumination Slow
 - Physically based
 - Interactions between objects

The big picture (basic)

- Light: energy in a range of wavelengths
 - White light all wavelengths
 - Colored (e.g. red) subset of wavelengths
- Surface "color" reflected wavelength
 - White reflects all lengths
 - Black absorbs everything
 - Colored (e.g. red) absorbs all but the reflected color
- Multiple light sources add (energy sums)

Materials

- Surface reflectance:
 - Illuminate surface point with a ray of light from different directions
 - How much light is reflected in each direction?

Reflectance Distribution Model

- Most surfaces exhibit complex reflectances
 - Vary with incident and reflected directions.
 - Model with combination known as BRDF
 BRDF: Bidirectional Reflectance Distribution Function

Intuitively: cross-sectional area of the "beam" intersecting an element of surface area is smaller for greater angles with the normal.

Computing Diffuse Reflection

- Depends on angle of incidence: angle between surface normal and incoming light
 - $I_{diffuse} = k_d I_{light} \cos \theta$
- In practice use vector arithmetic
 - $I_{diffuse} = k_d I_{light} (n \cdot l)$
- Always normalize vectors used in lighting
 n, I should be unit vectors
 - Scalar (B/W intensity) or 3-tuple (color)
 - k_d : diffuse coefficient, surface color
 - I_{light}: incoming light intensity
 - I_{diffuse}: outgoing light intensity (for diffuse reflection)

θ

Diffuse Lighting Examples

Lambertian sphere from several lighting angles:

need only consider angles from 0° to 90°

Empirical Approximation

- Snell's law = perfect mirror-like surfaces
 - But ..
 - few surfaces exhibit perfect specularity
 - Gaze and reflection directions never EXACTLY coincide
- Expect most reflected light to travel in direction predicted by Snell's Law
- But some light may be reflected in a direction slightly off the ideal reflected ray
- As angle from ideal reflected ray increases, we expect less light to be reflected

How to model this falloff?

varying light position

Light is linear

 If multiple rays illuminate the surface point the result is just the sum of the individual reflections for each ray

Ambient Light

- Non-directional light environment light
- Object illuminated with same light everywhere
 - Looks like silhouette
- Illumination equation $I = I_a k_a$
 - *I_a* ambient light intensity
 - k_a fraction of this light reflected from surface

Light Source Types

- Point Light
 - light originates at a point
- Directional Light (point light at infinity)
 - light rays are parallel
 - Rays hit a planar surface at identical angles
- Spot Light
 - point light with limited angles

no light

- Quadratic falloff (point- and spot lights)
- Brightness of objects depends on power per unit area that hits the object
- The power per unit area for a point or spot light decreases quadratically with distance

Light

Light has color

Interacts with object color (r,g,b)

 $I = I_{a}k_{a}$ $I_{a} = (I_{ar}, I_{ag}, I_{ab})$ $k_{a} = (k_{ar}, k_{ag}, k_{ab})$ $I = (I_{r}, I_{g}, I_{b}) = (I_{ar}k_{ar}, I_{ag}k_{ag}, I_{ab}k_{ab})$ = Blue light on white surface? = Blue light on red surface? $I_{a} = (q_{b}b) = (0, 0, 1)$ blue light reflected

Light and Material Specification

- Light source: amount of RGB light emitted
 - value = percentage of full intensity, e.g., (1.0,0.5,0.5)
 - every light source emits ambient, diffuse, and specular light
- Materials: amount of RGB light reflected
 - value represents percentage reflected e.g., (0.0,1.0,0.5)
- Interaction: multiply components
 - Red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

When to apply Lighting Model?

- per polygon
 - "flat shading"
- per vertex
 - "Gouraud shading"
- per pixel
 - "per pixel lighting", "Phong shading"

Complex Lighting and Shading

Displacement Mapping

35

36

UBC

Subsurface scattering

