

Color

Color/Lightness Constancy

Image courtesy of John McCann

3

4

Stroop Effect

- blue
- green
- purple
- red
- orange
- interplay between cognition and perception

Color Perception

- dogs ?
- birds ?
- your perception of "red" vs my perception of "red"?
- human color perception ?
- why not have RGB inks in printers?
- why not have CMY displays? why 3 colour displays?

Colour blindness, tetrachromats

• simulating color vision deficiencies

5

6

vischeck.com

Electromagnetic Spectrum

10

White Light

 sun or light bulbs emit many frequencies within the visible range to produce what we perceive as "white light"

Sunlight Spectrum

• spectral distribution: power vs. wavelength

Physiology of Vision

Rods and Cones

17

Physiology of Vision

- Center of retina is densely packed region called the *fovea*.
 - Cones much denser here than the *periphery*

Foveal Vision

• hold out your thumb at arm's length

Tristimulus Theory of Color Vision

- Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 primaries
- Colors that look the same but have different spectra are called metamers

20

Trichromacy

- · three types of cones
 - L or R, most sensitive to red light (610 nm)
 - M or G, most sensitive to green light (560 nm)
 - S or B, most sensitive to blue light (430 nm)

• color blindness results from missing cone type(s)

21

Metamers

 a given perceptual sensation of color derives from the stimulus of all three cone types

• identical perceptions of color can thus be caused by very different spectra

demo

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/color_theory.html

Color Spaces

23

Negative Lobes

RGB amounts 400 700

- sometimes need to point red light to shine on target in order to match colors
 - equivalent mathematically to "removing red"
 but physically impossible to remove red from CRT phosphors
- can't generate all other wavelenths with any set of three positive monochromatic lights!
- solution: convert to new synthetic coordinate system to make the job easy

RGB Color Space (Color Cube)

- define colors with (r, g, b) amounts of red, green, and blue
 - used by OpenGL
 - hardware-centric
- RGB color cube sits within CIE color space
 - · subset of perceivable colors
 - scale, rotate, shear cube

XYZ and RGB colour spaces

colour transformation matrix:

∇ x [−]		2.36460	-0.51515	0.00520	[R]
Y	=	-0.89653	1.42640	-0.01441	G
Z		-0.46807	0.08875	1.00921	B

- each monitor has its own RGB-to-XYZ transformation matrix
 - suppose we have a colour $R_A G_A B_A$ on monitor A and wish to view the same colour on monitor B:

$$\begin{array}{c} \textcircled{2} \begin{bmatrix} R_B \\ G_B \\ B_B \end{bmatrix} = \begin{bmatrix} M_B^{-1} \\ M_B \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \qquad \textcircled{1} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} M_A \\ M_A \end{bmatrix} \begin{bmatrix} R_A \\ G_A \\ B_A \end{bmatrix} \\ C_B = M_B^{-1} M_A C_A$$

RGB vs XYZ revisited

 another view of why the R curve goes necative

CIE Chromaticity Diagram

Color Interpolation, Dominant & Opponent Wavelength

CIE "Horseshoe" Diagram Facts

- all visible colors lie inside the horseshoe
 - result from color matching experiments
- spectral (monochromatic) colors lie around the border
 - straight line between blue and red contains purple tones
- colors combine linearly (i.e. along lines), since the xy-plane is a plane from a linear space

Device Color Gamuts

- Used mainly in color printing, where light is absorbed by dyes
- Cyan, Magenta and Yellow primaries are complements of Red, Blue and Green
- Primaries (dyes) subtracted from white paper which absorbs no energy
 - Red = White-Cyan = White-Green-Blue (0,1,1)
 - Green = White-Magenta = White-Red-Blue (1,0,1)
 - Blue = White-Yellow = White-Red-Green (1,1,0)

