CPSC 314
 Assignment 4

1. Light and shading
(a) Given a scene with two non specular objects, one yellow $\left(k_{a}=k_{d}=(1,1,0)\right)$ and one red $\left(k_{a}=k_{d}=(1,0,0)\right)$, classify the following statement as true or false. Explain.
i. (1 point) Given a single point light source with intensity $I_{p}=(1,0,0)$ the objects will have the same shading.
ii. (1 point) Given a single ambient light source with intensity $I_{a}=(1,0,0)$ the objects will have the same shading.
(b) (1 point) Write the openGL code for defining the following lighting scenario with three light sources: ambient light source with intensity $I_{a}=(0.3,0,0)$; directional light with direction $(1,0,0)$ and intensity $(0.6,0.6,0.6)$; point light at $(10,0,0)$.
(c) (1 point) In openGL define the material properties for a triangle with $k_{a}=(1, .5, .5), k_{d}=$ $(1, .5, .5), k_{s}=(.5, .5, .5)$ and specularity coefficient $n=16$.
(d) In the scene below there is one directional light source at infinity $(\infty, 0,0)$) with direction $(-1,0,0)$. The view direction is the same as light direction $(-1,0,0)$. The shading coefficients for the triangle are $k_{a}=k_{d}=(1,0,0), k_{s}=(0,1,0)$ and the specularity coefficient is $n=\infty$.

Compute the color at point P on the triangle using the following shading algorithms (use per-face or per-vertex normals as necessary):
i. (2 points) Flat shading,
ii. (2 points) Gourard shading,
iii. (2 points) Phong shading.
2. Ray-Tracing
(a) (3 points) Draw the ray tree for the ray R shown below. Assume index of refraction c_{1} for air is 1 and index of refraction for all the transparent objects in the scene is $c_{2}=\frac{1}{\sqrt{2}}$. Use Snell's law to obtain refraction angles.

(b) (2 points) Assume the transparency coefficient α for the transparent objects is .5, the light intensity is $I_{p}=(1,1,1)$ (no other lights), and the diffuse/specular coefficients for the objects are $k_{d}^{1}=(1,0,0), k_{s}^{1}=(0,0,0), k_{d}^{2}=(0,0,0), k_{s}^{2}=$ $(1,1,1), k_{d}^{3}=(0,0,0), k_{s}^{3}=(1,1,1), k_{d}^{4}=(0,1,0), k_{s}^{4}=(0,0,0)$. What is the color returned by the ray tracing algorithm for ray R ?
3. Texture Mapping.
(a) (3 points) The following texture is stored in the array image of size imgx $\times i m g y$ (256×256).

Draw the textured triangle produced by the following code:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA, imgx, imgy, 0,
GL_RGBA, GL_UNSIGNED_BYTE, image);
glEnable(GL_TEXTURE_2D);
glBegin(GL_POLYGON);
glTexCoord2f(0, 0);
glVertex3d(0 , 0, 0);
glTexCoord2f(1, 1);
glVertex3d (1, 0, 0);
glTexCoord2f(0, 1);
glVertex3d(1, 1, 0);
glEnd();
(b) (2 points) The texture below is stored in a 4×4 "texel" array.

How will this texture look when mapped to a square of 3×3 pixels? Draw and explain.

