CPSC 314
 Theory Review 1

August 26, 2013

1. (1 point) Vectors

$$
a=\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right) \quad b=\left(\begin{array}{c}
-2 \\
5 \\
3
\end{array}\right)
$$

- compute $a \cdot b$,
- compute $a^{T} b$
- compute $a \times b$
- compute $b \times a$

2. (1 point) Matrices

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 2 & 5 \\
-4 & 1 & 3
\end{array}\right) \quad B=\left(\begin{array}{ccc}
3 & 1 & 6 \\
1 & 2 & 2 \\
1 & -1 & 2
\end{array}\right)
$$

- Compute $C=A B$.
- Does $A B=B A$?
- Given the vector a from the previous question, compute $c=A a$.
- Given the vector a from the previous question, compute $d=a^{T} A$.

3. (1 point) Normals and Planes
T is a triangle in 3D with vertices $P_{1}=(1,1,0), P_{2}=(1,0,2)$ and $P_{3}=(3,2,0)$ (counterclockwise around the normal).

- Compute the normal to T.
- Compute the area of T.
- Compute the implicit plane equation $A x+B y+C z+D=0$ for the plane that T lies in.

4. (1 point) Segments and Lines

Given two segments in 2D: S_{1} from $(0,1)$ to $(-1,2)$ and S_{2} from $(0,0)$ to $(2,2)$,

- Does the point $P=(0,1)$ lie on S_{1} ?
- Do S_{1} and S_{2} intersect? If yes, compute the intersection, if no, explain.

5. (1 point) Frames

Specify the coordinates of point P with respect to coordinate frames A, B and C.

