
CPSC 314
Theory Assignment 3 - Solution

November 7, 2013

1. Lighting:

The scene below consists of: a sphere of radius
√

2 centered at origin with kd = (1, 0, 0)
and ks = (1, 1, 1); a parallel (directional) light L = (0,−1, 0) with Id = Is = (1, 1, 1);
and an eye location, as shown, at (−3, 1, 0). Assume there are no other light-sources.

(a) At what point (coordinates) on the sphere will we get maximal specular reflection
(white dot)? Explain your answer.

In any common model of lighting the point with maximal specular reflection is the
one that follows Snell’s law. I.e. maximal illuminance reaches at the point P such
that a ray, after collision with surface at P , is being reflected exactly to the eye.
In other words, light direction and look direction towards P have the same angles
with the normal at P . In order to find P with that property, the very first thing we
can notice is that the point P should have z = 0. This leaves us with 2D problem
overall - sphere now is a circle. Now in general case we would have to the following
equation:

nP · (P − eye)
||P − eye||

=
nP · LightDir

,

where nP is normal in P , eye is eye location, LightDir is normalized light direction.
But in our case it’s very easy to find the only visible point on the sphere with the

1

CPSC 314 Assignment 3 Nov 4, 2013

sought property: it’s P = (−1, 1). We can easily make sure that normal nP =
(−1/

√
2, 1/
√

2) makes equal angles with Eye− P and LightDir = (0,−1).

(b) At what point (coordinates) on the sphere will we get maximal diffuse illumination
(red dot)? Explain your answer.

For diffusion, the point of maximum illumination is such that normal is collinear
with the light direction. Here the location of the eye is not important. Here the lit
point with such property is the top of the sphere (0,

√
2), this is our final answer.

(c) Given a single ambient light source with Ia = (1, 0, 0) and a triangle P1, P2, P3 with
ka = (0, 0, 1), what color will be assigned to P1 using the light equation? Show your
work.

As we know, the ambient light influence on surface’s color does not depend on the
normal of the surface. To be more precise, the influence of ambient light is just
a dot product of light’s color/intensity and object’s ka, i.e. I = Ia · ka. Here,
I = (1, 0, 0) · (0, 0, 1) = (0, 0, 0), i.e. the whole triangle will be black.

2. Light and shading

(a) Given a scene with two non specular objects, one yellow (ka = kd = (1, 1, 0)) and one
red (ka = kd = (1, 0, 0)), classify the following statement as true or false. Explain.

i. Given a single point light source with intensity Ip = (1, 0, 0) the objects will
have the same shading. False. As the shading of an object induced by a point
light depends on the normals of the object, the shading will be the same iff the
objects are exactly the same and their positions coincide.

ii. Given a single ambient light source with intensity Ia = (1, 0, 0) the objects will
have the same shading. True, as abmient shading does not depends on object
normals and both objects will glow with red: I1 = k1a · Ip = k2a · Ip = I2 = (1, 0, 0)

(b) Write the openGL code for defining the following lighting scenario with three light
sources: ambient light source with intensity Ia = (0.3, 0, 0); directional light with
direction (1, 0, 0) and intensity (0.6, 0.6, 0.6); point light at (10, 0, 0).

The minimal answer to the question would be the following. Ambient shading doens’t
depend on the ambient light’s position, so we don’t have to specify the position for
the first light.

g l L i g h t f v (GL LIGHT0 ,GL AMBIENT, { 0 . 3 , 0 , 0 , 1 }) ;

To add the direction light, the only trick is that we specify the direction in the
GL POSITION with forth component of the position equal to 0 - that makes OpenGL
treat the coordinates as direction, not location:

g l L i g h t f v (GL LIGHT1 , GL POSITION,{ 1 , 0 , 0 , 0}) ;
g l L i g h t f v (GL LIGHT1 , GL DIFFUSE, { 0 . 6 , 0 . 6 , 0 . 6 , 1 }) ;

And finally, adding the third light is easy:

g l L i g h t f v (GL LIGHT2 , GL POSITION,{1 0 , 0 , 0 , 1}) ;

Page 2 of 6

CPSC 314 Assignment 3 Nov 4, 2013

If you want to be exceptionally correct, according to OpenGL specification, default
GL DIFFUSE and GL SPECULAR values for GL LIGHT0 are (1,1,1,1), though
for all the other lights it’s (0,0,0,1). So to make our GL LIGHT0 only ambient, we
will have to overwrite the default values by adding two more function calls:

g l L i g h t f v (GL LIGHT0 , GL DIFFUSE,{ 0 , 0 , 0 , 1}) ;
g l L i g h t f v (GL LIGHT0 ,GL SPECULAR,{ 0 , 0 , 0 , 1}) ;

(c) In openGL define the material properties for a triangle with ka = (1, .5, .5), kd =
(1, .5, .5), ks = (.5, .5, .5) and specularity coefficient n = 16.

g l M a t e r i a l f v (GL FRONT AND BACK, GL AMBIENT AND DIFFUSE, {1 , . 5 , . 5 , 1}) ;
g l M a t e r i a l f v (GL FRONT AND BACK, GL SPECULAR, { . 5 , . 5 , . 5 , 1}) ;
g l M a t e r i a l f v (GL FRONT AND BACK, GL SHININESS , 1 6) ;

Page 3 of 6

CPSC 314 Assignment 3 Nov 4, 2013

3. Clipping

(a) Write an algorithm (pseudo-code) for clipping a line L = P1P2 (P1 = (P x
1 , P

y
1), P2 =

(P x
2 , P

y
2)) against a triangle T = (T1, T2, T3) with T1 = (T x

1 , T
y
1), T2 = (T x

2 , T
y
2),

T3 = (T x
3 , T

y
3) (in 2D). Follow the framework of the Cohen-Sutherland algorithm

for clipping a line against a window.

First we enumerate all the sides of the triangle in an arbitrary way (red numbers
on the figure). Then we orient each side, i.e. choose normal direction. For conve-
nience, we for each side we choose outer normals with regard to the triangle - that
will give us later code 000 inside the triangle. Then for any point on the plane we
can calculate its 3-digit binary code, where i-th digit means whether the point is to
the left or to the right of i-th line. Then the algorithm goes like that:

CsClip (P 1 , P 2 , T 1 , T 2 , T 3)
C 1 <− Code (P 1 , T 1 , T 2 , T 3) ;
C 2 <− Code (P 2 , T 1 , T 2 , T 3) ;
i f (C 1 & C 2) != 0) re turn ;
i f (C 1 | C 2) == 0) DrawLine (P 1 , P 2) ;
// Here we assume that P 1 has maximum code , i . e . C 1 > C 2
Edge <− t r i a n g l e boundary cor re spond ing to
the l e f t m o s t non−zero component o f C 1 ;
P 3 <− P 1 P 2 i n t e r s e c t with Edge
re turn CsClip (P 2 , P 3 , T 1 , T 2 , T 3) ;

(b) Explain how to extend your algorithm for clipping the line L against a convex
polygon T = (T1, T2, . . . , Tn).

The only thing that changes in the algorithm above is that we will have n-digit code.
It’s easy to notice that because of the recursion and the fact we’re finding location
of each queried point with regards to every line, the algorithm becomes inefficient
with large ns.

(c) Will your algorithm work for non-convex polygons? Explain.

Page 4 of 6

CPSC 314 Assignment 3 Nov 4, 2013

No, it won’t work: here we use the fact that if the point lies on the same side of every
line forming the polygon, then the point is inside - which is not true for non-convex
polygons.

4. Bresenham

Write the Bresenham algorithm for rasterizing a line from (x1, y1) to (x2, y2) where
x1 ≥ x2, y2 > y1 and x1 − x2 < y2 − y1.

Line (x1 , y1 , x2 , y2)
{
i n t x , y , dx , dy , d , delta w , delta nw ;
x = x1 ; y = y1 ;
dx = x2 − x1 ;
dy = −(y2 − y1) ; // We take dy with negat ive s i gn
// so that we keep the r e s t o f the a lgor i thm untouched
d = −2∗dy − dx ;
de l ta w = 2∗dy ; delta nw = 2∗(dy−dx) ;
P lo tP ixe l (x , y) ;

//and now the only d i f f e r e n c e i s that we ’ re moving UP
// i . e . i n c r e a s e y each time
whi le (y < y2)
{

i f (d<0)
{

d = d + del ta w ;
}

e l s e
{

d = d + delta nw ;
x−−;
}

y++;
P lo tP ixe l (x , y) ;
}
}

5. Clipping (Bonus question)

Use the definition of convexity to prove that the intersection of two convex objects is
convex.

Let’s take two convex objects A and B. By definition,

∀x, y ∈ A and α ∈ [0, 1], (1− α)x+ αy ∈ A

Page 5 of 6

CPSC 314 Assignment 3 Nov 4, 2013

and the same holds for B. Now let’s take arbitrary x, y ∈ A∩B and α ∈ [0, 1]. Then by
definition of convexity of A, p = (1 − α)x + αy ∈ A, since x, y ∈ A. In the same way,
p = (1− α)x+ αy ∈ B, since x, y ∈ B. Therefore, p ∈ Aandp ∈ B, so p ∈ A ∩B.

Page 6 of 6

