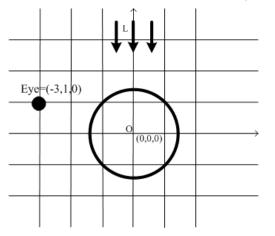
1. Lighting:

The scene below consists of: a sphere of radius $\sqrt{2}$ centered at origin with $k_d = (1,0,0)$ and $k_s = (1,1,1)$; a parallel (directional) light L = (0,-1,0) with $I_d = I_s = (1,1,1)$; and an eye location, as shown, at (-3,1,0). Assume there are no other light-sources.



- (a) At what point (coordinates) on the sphere will we get maximal specular reflection (white dot)? Explain your answer.
- (b) At what point (coordinates) on the sphere will we get maximal diffuse illumination (red dot)? Explain your answer.
- (c) Given a single ambient light source with $I_a = (1, 0, 0)$ and a triangle P_1, P_2, P_3 with $k_a = (0, 0, 1)$, what color will be assigned to P_1 using the light equation? Show your work.

- 2. Light and shading
 - (a) Given a scene with two non specular objects, one yellow $(k_a = k_d = (1, 1, 0))$ and one red $(k_a = k_d = (1, 0, 0))$, classify the following statement as true or false. Explain.
 - i. Given a single point light source with intensity $I_p = (1, 0, 0)$ the objects will have the same shading.
 - ii. Given a single ambient light source with intensity $I_a = (1, 0, 0)$ the objects will have the same shading.
 - (b) Write the openGL code for defining the following lighting scenario with three light sources: ambient light source with intensity $I_a = (0.3, 0, 0)$; directional light with direction (1, 0, 0) and intensity (0.6, 0.6, 0.6); point light at (10, 0, 0).

(c) In openGL define the material properties for a triangle with $k_a = (1, .5, .5), k_d = (1, .5, .5), k_s = (.5, .5, .5)$ and specularity coefficient n = 16.

3. Clipping

(a) Write an algorithm (pseudo-code) for clipping a line $L = P_1P_2$ ($P_1 = (P_1^x, P_1^y)$, $P_2 = (P_2^x, P_2^y)$) against a triangle $T = (T_1, T_2, T_3)$ with $T_1 = (T_1^x, T_1^y)$, $T_2 = (T_2^x, T_2^y)$, $T_3 = (T_3^x, T_3^y)$ (in 2D). Follow the framework of the Cohen-Sutherland algorithm for clipping a line against a window.

(b) Explain how to extend your algorithm for clipping the line L against a convex polygon $T = (T_1, T_2, \ldots, T_n)$.

(c) Will your algorithm work for non-convex polygons? Explain.

4. Bresenham

Write the Bresenham algorithm for rasterizing a line from (x_1, y_1) to (x_2, y_2) where $x_1 \ge x_2, y_2 > y_1$ and $x_1 - x_2 < y_2 - y_1$.

5. Clipping (Bonus question)

Use the definition of convexity to prove that the intersection of two convex objects is convex.