
1

Computer GraphicsComputer Graphics

Copyright 2013. Alla Sheffer, UBC

Scan Conversion- Polygons

Page 1

Chapter 9

Scan Conversion (part 2)–
Drawing Polygons on Raster

Display

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

Geometry Processing

Rasterization Fragment Processing

Rendering Pipeline

Triangle/Polygon Rasterization

 Triangle (convex polygon) = intersection of
edge half-spaces
 Defined by set of implicit line equations

Implicit Formulation

+
++

-

-
-

Usage:
 Go over each pixel on screen

 To be efficient restrict to bounding rectangle
 Check if pixel is inside/outside of triangle

 Use sign of edge equations

Using Implicit Edge Equations

 Implicit equation of a triangle edge:

 see Bresenham algorithm
 L(x,y) positive on one side of edge, negative

on the other
 Question:

 What happens for vertical lines?

Computing Edge Equations

0)()(
)(

)(
),(




 ss
se

se yyxx
xx

yy
yxL

2

Computer GraphicsComputer Graphics

Copyright 2013. Alla Sheffer, UBC

Scan Conversion- Polygons

Page 2

 Multiply with denominator

 Avoids singularity
 Works with vertical lines

 What about the sign?
 Which side is in, which is out?

Edge Equations

L(x,y)  (ye  ys)(x  xs) (y  ys)(xe  xs)  0

 Determining the sign
 Which side is “in” and which is “out” depends

on order of start/end vertices…
 Convention: specify vertices in counter-

clockwise order

Edge Equations

p1

p2

p3

p5

p5

p4

 Counter-Clockwise Triangles
 The equation L(x,y) as specified above is

negative inside, positive outside
 Flip sign:

 Clockwise triangles
 Use original formula

Edge Equations

L(x,y)  (ye  ys)(x  xs) (y  ys)(xe  xs)  0

L(x,y)  (ye  ys)(x  xs) (y  ys)(xe  xs)  0

 Implicit formulation doesn’t work for non-convex
polygons

 Require per pixel, per edge computation
 Observation:

 Straight line intersection
with polygon = set of segments

 Alternative: algorithm based on
scan-line/edge intersections
 Works for general polygons
 Less per pixel computations

Scan Conversion of Polygons

 General Algorithm
 Intersect each scanline with

all edges
 Sort intersections in x
 Calculate parity to

determine in/out
 Fill the ‘in’ pixels
 Efficiency improvement:

 Exploit row-to-row
coherence using “edge
table”

Scan Conversion of Polygons

 Special case: Scan-converting a trapezoid
 Exploit continuous L and R edges

 Predict intersections from one line to next

Edge Walking

Lx

1

Lx Rx

1

Rx

Ty

By

scanTrapezoid(, , , , ,)Lx Rx By Ty
Lx Rx

3

Computer GraphicsComputer Graphics

Copyright 2013. Alla Sheffer, UBC

Scan Conversion- Polygons

Page 3

for (y=yB; y<=yT; y++) {

for (x=xL; x<=xR; x++)

setPixel(x,y);

xL += DxL;

xR += DxR;

}

Edge Walking

Lx

1

Lx Rx

1

Rx

Ty

By

scanTrapezoid(, , , , ,)Lx Rx By Ty
Lx Rx  Split triangles into two “trapezoids”

with continuous left and right edges

Edge Walking Triangles

1P

3P

2P

mP

13m
12m

23m

scanTrapezoid(, , , , ,)
13

1

m 12

1

m3x mx 3y 1y

scanTrapezoid(, , , , ,)
23

1

m 12

1

m2x 2x 2y 3y

Issues
 Many applications have small triangles

 Setup cost is non-trivial
 Clipping triangles produces non-triangles

 Can be avoided through re-triangulation

Edge Walking Triangles

 Old hardware:
 Use edge-walking algorithm

 Scan-convert edges, then fill in scanlines
 Compute interpolated values by interpolating

along edges, then scanlines
 Requires clipping of polygons against viewing

volume
 Faster if you have a few, large polygons
 Possibly faster in software

Discussion

 Modern GPUs:
 Use edge equations

 Plus plane equations for attribute interpolation
 No clipping of primitives required

 Faster with many small triangles
 Additional advantage:

 Can control the order in which pixels are
processed

 Allows for more memory-coherent traversal
orders
 E.g. tiles or space-filling curve rather than

scanlines

Discussion:

 Exactly which pixels should
be lit?
 Those pixels inside the

triangle edge (of course)
 But what about pixels exactly

on the edge?
 Don’t draw them: gaps

possible between triangles
 Draw them: order of

triangles matters

Rasterization Issues
(Independent of Algorithm)

4

Computer GraphicsComputer Graphics

Copyright 2013. Alla Sheffer, UBC

Scan Conversion- Polygons

Page 4

 Shared Edge Ordering

 Need a consistent (if arbitrary) rule
 Example: draw pixels on left or top edge, but

not on right or bottom edge

Triangle Rasterization Issues

 Sliver

Triangle Rasterization Issues

 Moving Slivers

Triangle Rasterization Issues

 These are ALIASING Problems
 Problems associated with representing

continuous functions (triangles) with finite
resolution (pixels)

 More on this problem when we talk about
sampling…

Triangle Rasterization Issues

Values in the interior

Barycentric coordinates

 Interpolate between vertices:
 z
 r,g,b - colour components
 u,v - texture coordinates
 - surface normals

 Equivalent
 Barycentric coordinates
 Bilinear interpolation
 Plane Interpolation

Interpolation – access triangle interior

zyx NNN ,,

5

Computer GraphicsComputer Graphics

Copyright 2013. Alla Sheffer, UBC

Scan Conversion- Polygons

Page 5

 Area

 Barycentric coordinates

Barycentric Coordinates

31212

1
PPPPA 

3P

2P

1P

P
332211

3

21

,/

,/,/

21

1332

PaPaPaP

AAa

AAaAAa

PPP

PPPPPP







weighted combination of vertices

Barycentric Coordinates

332211 PaPaPaP 

1P

3P

2P

P

(1,0,0)

(0,1,0)

(0,0,1) 5.02 a

12 a

02 a

1,,0

1

321

321




aaa

aaa

Alternative formula:
Bi-Linear Interpolation

 Interpolate quantity along L and R edges
 (as a function of y)
 Then interpolate quantity as a function of x

y

P(x,y)

v1

v2

v3

vL vR

 Formulation

Bi-Linear interpolation

RL P
cc

c
P

cc

c
P 







21

1

21

2

P2

P3

P1

PL PRP

3
21

1
2

21

2 P
dd

d
P

dd

d
PL 






1
21

1
2

21

2 P
bb

b
P

bb

b
PR 






c1: c2



























 1
21

1
2

21

2

21

1
3

21

1
2

21

2

21

2 P
bb

b
P

bb

b

cc

c
P

dd

d
P

dd

d

cc

c
P

 Most common approach, and what OpenGL
does
 Perform Phong lighting at the vertices
 Linearly interpolate the resulting colors over

faces
 Along edges
 Along scanlines

 Equivalent to
Barycentric Coordinates!

Bi-Linear Interpolation

C1

C2

C3

edge: mix of c1, c2

edge: mix of c1, c3
interior: mix of c1, c2, c3

 Observation: Values vary linearly in image plane
 E.g.: r = Ax + By + C

 r= red channel of the color
 Same for g, b, Nx, Ny, Nz, z…

 From info at vertices we know:

 Solve for A, B, C
 One-time set-up cost per triangle & interpolated

value

Another Alternative:
Plane Equation

p1

p2

p3

r1  Ax1  By1  C

r2  Ax2  By2  C

r3  Ax3  By3  C

6

Computer GraphicsComputer Graphics

Copyright 2013. Alla Sheffer, UBC

Scan Conversion- Polygons

Page 6

Discussion

 Which algorithm (formula) to use when?
 Bi-linear interpolation

 Together with trapezoid scan conversion
 Plane equations

 Together with implicit (edge equation) scan
conversion

 Barycentric coordinates
 Too expensive in current context
 But: method of choice for ray-tracing

 Whenever you only need to compute the value for a
single pixel

 All formulations should provide same value
 Can verify barycentric properties

Validation

1,,0

1

321

321




aaa

aaa

Shading

Computing lighting impact inside
triangle interior

Shading

 Input to Scan Conversion:
 Vertices of triangles (lines, quadrilaterals…)
 Color (per vertex)

 Specified with glColor
 Or: computed with lighting

 World-space normal (per vertex)
 Left over from lighting stage

 Shading Task:
 Determine color of every pixel in the triangle

Shading

 How can we assign pixel colors using this
information?
 Easiest: flat shading

 Whole triangle gets one color (color of 1st

vertex)
 Better: Gouraud shading

 Linearly interpolate color across triangle
 Even better: Phong shading

 Linearly interpolate the normal vector
 Compute lighting for every pixel
 Note: not supported by rendering pipeline as

discussed so far

Flat Shading

 Simplest approach: calculate illumination at
one point per polygon (e.g. center)

 Obviously inaccurate for smooth surfaces

7

Computer GraphicsComputer Graphics

Copyright 2013. Alla Sheffer, UBC

Scan Conversion- Polygons

Page 7

 If an object really is faceted, is this accurate?

Flat Shading Approximations

 If an object really is faceted, is this accurate?

 no!
 For point sources, direction

to light varies across the facet

 For specular reflectance,
direction to eye varies across the facet

Flat Shading Approximations

 What if we evaluate Phong lighting
model at each pixel of the polygon?
 Better, but result still clearly

faceted
 Gouraud Shading: For smoother-

looking surfaces introduce vertex
normals at each vertex
 Usually different from facet normal
 Used only for shading
 Think of as a better approximation

of the real surface that the
polygons approximate

Improving Flat Shading

 Vertex normals may be
 Provided with the model
 Computed from first principles
 Approximated by

averaging the normals
of the facets that
share the vertex

Vertex Normals

 Often appears dull, chalky
 Lacks accurate specular component

 if included, will be averaged over entire
polygon

Gouraud Shading Artifacts

C1

C2

C3

this interior shading missed!

C1

C2

C3

this vertex shading spread
over too much area

Gouraud Shading Artifacts

 Mach bands
 Eye enhances discontinuity in first derivative
 Very disturbing, especially for highlights

8

Computer GraphicsComputer Graphics

Copyright 2013. Alla Sheffer, UBC

Scan Conversion- Polygons

Page 8

 linearly interpolating surface normal across
the facet, applying Phong lighting model at
every pixel
 Same input as Gouraud shading
 Pro: much smoother results
 Con: considerably more expensive

 Not the same as Phong lighting
 Common confusion
 Phong lighting: empirical model to calculate

illumination at a point on a surface

Phong Shading

 Linearly interpolate the vertex normals
 Compute lighting equations at each pixel
 Can use specular component

Phong Shading

N1

N2

N3

N4

Itotal  kaIambient  Ii kd n  li  ks v  ri nshiny 
i1

lights


remember: normals used in
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

Phong Shading Difficulties

 Computationally expensive
 Per-pixel vector normalization and lighting

computation!
 Floating point operations required

 Lighting after perspective projection
 Messes up the angles between vectors
 Have to keep eye-space vectors around

 No direct support in standard rendering
pipeline
 But can be simulated with texture mapping,

procedural shading hardware (see later)

Gouraud Phong

Shading Artifacts: Silhouettes

 Polygonal silhouettes remain

