Computer Graphics

Chapter 9

-

Scan Conversion (part 2)—
Drawing Polygons on Raster
Display

Rendering Pipeline

e

Geometry Processing

Scan Conversion- Polygons

- ’--

>--

Rasterization

Fragment Processing

Copyright 2013. Alla Sheffer, UBC

Page 1

Computer Graphics Scan Conversion- Polygons

Triangle/Polygon Rasterization

Implicit Formulation

= Triangle (convex polygon) = intersection of
edge half-spaces

= Defined by set of implicit line equations

Copyright 2013. Alla Sheffer, UBC Page 2

Computer Graphics

Using Implicit Edge Equations

Usage:
= Go over each pixel on screen

= To be efficient restrict to bounding rectangle
= Check if pixel is inside/outside of triangle
= Use sign of edge equations

oo

Computing Edge Equations

= Implicit equation of a triangle edge:

L(x,y) = eV (o x) (y-y,)=0
(X, —x)

= see Bresenham algorithm

= L(X,y) positive on one side of edge, negative
on the other

= Question:
= What happens for vertical lines?

Copyright 2013. Alla Sheffer, UBC

Scan Conversion- Polygons

Page 3

Computer Graphics Scan Conversion- Polygons

i Edge Equations

= Multiply with denominator
L(X’ y) = (ye - ys)(x - Xs) - (y - ys)(xe - Xs) =0
= Avoids singularity

= Works with vertical lines

= What about the sign?
= Which side is in, which is out?

i Edge Equations

= Determining the sign

= Which side is “in” and which is “out” depends
on order of start/end vertices...

= Convention: specify vertices in counter-
clockwise order

p3

O

pl
p5

p5

Copyright 2013. Alla Sheffer, UBC Page 4

Computer Graphics

i Edge Equations

= Counter-Clockwise Triangles

= The equation L(x,y) as specified above is
negative inside, positive outside

= Flip sign.
L(X’ y) = _(ye - ys)(x - Xs) + (y - ys)(xe - Xs) =0

n Clockwise triangles
= Use original formula

L(X’ y) = (ye - ys)(x - Xs) - (y - ys)(xe - Xs) =0

i Scan Conversion of Polygons

= Implicit formulation doesn’t work for non-convex
polygons
= Require per pixel, per edge computation

. . p
= Observation: J —
= Straight line intersection b 1, R, ¥
with polygon = set of segments '/ T
I 3 A\ e I
]' :_/ F_L \(\ p4 i ,3
= Alternative: algorithm based on ; LI
scan-line/edge intersections ¥ A

= Works for general polygons
= Less per pixel computations

Copyright 2013. Alla Sheffer, UBC

Scan Conversion- Polygons

Page 5

Computer Graphics

Scan Conversion- Polygons

= General Algorithm

all edges
= Sort intersections in x

= Calculate parity to
determine in/out

= Fill the ‘in’ pixels

Scan Conversion of Polygons

= Intersect each scanline with

= Efficiency improvement:

[68000EE00005000000000000000008Seee0snees
LT 0 YIS T 0
o ., T IS0 00 e T
. T e T e T
T A
¢ 7] T T 0 0
0 B e e e L L
¢] T 7 T T T
O O S 40 e s s es S sss Snsness
¢] b b b 80 o
¢] e e e . 9w T
e] L b b b B
2SS (90 0r /9080500000000 aee isessses)
SinEs fivdiissinniiten et fieenes
¢ 7] T 0 T T 0
0 B Ll e e L
¢] T T T T
o N
¢ i 0
0 L e L e e o
¢ T T T T T o)
ggHH:%%HHH:%EHHH HHH:%HHH:%%HH)
2SS0 ITEL0 0TI 000 0096 Ce
¢ 7Y T 7Y T 7Y T
g PJ
- e\

Edge Walking

= Exploit continuous L and

T

Ye
AX| XL

= Exploit row-to-row JPE‘ - pI 2
coherence using “edge | P P\ e)
table” v % \ 2R,

p ™
3 P,
UBC

= Special case: Scan-converting a trapezoid

Predict intersections from one line to next

scanTrapezoid(X X , Y. Y1, AX_ AXg)

o
/J\._./ — A,

T
—
_

R edges

Copyright 2013. Alla Sheffer, UBC

Page 6

Computer Graphics Scan Conversion- Polygons

Edge Walking

scanTrapezoid(X, , X Ye. Y1, AXL , AXR)
for (y=yB; y<=yT; y++) {
for (X=xL; X<=xR; Xx++)
setPixel(X,y);
XL += DxL;
XR += DxR;

Yr X /‘
1 1
Ys /-J \'—)'(/ K——A)(

AXL XL R

}

UBC

R
—
- vy

Edge Walking Triangles

= Split triangles into two “trapezoids”
with continuous left and right edges

1
scanTrapezoid(X3 , Xy, Y3, Y1 ol
13

& 1

m23

1)
My,
1

scanTrapezoid(X,, X5, Y5, Y3,—,—)

m12

—
_ v

Copyright 2013. Alla Sheffer, UBC

Page 7

Computer Graphics Scan Conversion- Polygons

i Edge Walking Triangles

Issues
= Many applications have small triangles
= Setup cost is non-trivial
= Clipping triangles produces non-triangles
= Can be avoided through re-triangulation

i Discussion

= Old hardware:
= Use edge-walking algorithm
= Scan-convert edges, then fill in scanlines

= Compute interpolated values by interpolating
along edges, then scanlines

= Requires clipping of polygons against viewing
volume

= Faster if you have a few, large polygons

= Possibly faster in software

Copyright 2013. Alla Sheffer, UBC Page 8

Computer Graphics

Scan Conversion- Polygons

i Discussion:

= Modern GPUs:
= Use edge equations

= No clipping of prim

processed

orders

scanlines

= Plus plane equations for attribute interpolation

= Faster with many small triangles
= Additional advantage:
= Can control the order in which pixels are

= Allows for more memory-coherent traversal

= E.g. tiles or space-filling curve rather than

itives required

Rasterization Issues

= Exactly which pixels should
be lit?
= Those pixels inside the
triangle edge (of course)

on the edge?
« Don’t draw them: gaps

= Draw them: order of
triangles matters

(Independent of Algorithm)

s But what about pixels exactly.

possible between triangles

Copyright 2013. Alla Sheffer, UBC

Page 9

Computer Graphics Scan Conversion- Polygons

i Triangle Rasterization Issues

= Shared Edge Ordering

= Need a consistent (if arbitrary) rule

= Example: draw pixels on left or top edge, but
not on right or bottom edge

i Triangle Rasterization Issues

= Sliver

Copyright 2013. Alla Sheffer, UBC

Page 10

10

Computer Graphics

i Triangle Rasterization Issues

= Moving Slivers

i Triangle Rasterization Issues

s These are ALIASING Problems

= Problems associated with representing
continuous functions (triangles) with finite
resolution (pixels)

= More on this problem when we talk about
sampling...

Copyright 2013. Alla Sheffer, UBC

Page 11

Scan Conversion- Polygons

11

Computer Graphics

* Values in the interior

Barycentric coordinates

i Interpolation — access triangle interior

= Interpolate between vertices:

" Z

= I,9,b - colour components

= U,v - texture coordinates

= N,,N,, N, - surface normals
= Equivalent

= Barycentric coordinates

= Bilinear interpolation

= Plane Interpolation

Copyright 2013. Alla Sheffer, UBC

Page 12

Scan Conversion- Polygons

12

Computer Graphics Scan Conversion- Polygons

* Barycentric Coordinates

= Area
1

AZE q:;zxip?:

= Barycentric coordinates
a=Aopp ! Ad, =Agps A
;= Appp I'A,

P=aP +a,P, +a,P, |:>3

i Barycentric Coordinates

sweighted combination of vertices

P=a P +a,-P, + a,-PF,

a+a,+a; =1
0<a,a,a,<1 R @00
a,=0
(0,0) a,=05
" P\ a,=1
P, 010

Copyright 2013. Alla Sheffer, UBC

Page 13

13

Computer Graphics

Alternative formula:
i Bi-Linear Interpolation

= (as a function of y)

vl
v3 P(x.y)
VR
y
v2

= Interpolate quantity along L and R edges

= Then interpolate quantity as a function of x

i Bi-Linear interpolation

= Formulation p_- % p, & p
C, +C, C, +GC,
Py d d
P=—2 P+ L P
d, +d, d, +d,
s P - b, - b, 3
Pr b+b, > b +b,

poC [G p, & pl G [DB p
c,+¢c,\ d +d, d, +d, c,+C,\ b +h,

b, HJ
b, +b,

Copyright 2013. Alla Sheffer, UBC

Page 14

Scan Conversion- Polygons

14

Computer Graphics

i Bi-Linear Interpolation

= Most common approach, and what OpenGL
does
= Perform Phong lighting at the vertices
= Linearly interpolate the resulting colors over
faces edge: mix of ¢, ¢, C,
= Along edges
« Along scanlines LA
= Equivalent to

Barycentric Coordinates!
Gz

interior: mix of ¢, ¢2, c3
edge: mix of ¢Z, ¢3

Another Alternative:

i Plane Equation

= Observation: Values vary linearly in image plane
= Eg:r=Ax+By+C
= r=red channel of the color
=« Same for g, b, Nx, Ny, Nz, z... 03
= From info at vertices we know:
L=Ax,+By,+C
r,=AX,+By,+C
r,=AXx;+By,+C

= Solve for A, B, C
= One-time set-up cost per triangle & interpolated

value

pl

p2

Copyright 2013. Alla Sheffer, UBC

Scan Conversion- Polygons

Page 15

15

Computer Graphics Scan Conversion- Polygons

i Discussion

= Which algorithm (formula) to use when?

= Bi-linear interpolation
= Together with trapezoid scan conversion

= Plane equations
= Together with implicit (edge equation) scan

conversion

= Barycentric coordinates

= TOO expensive in current context

= But: method of choice for ray-tracing

Whenever you only need to compute the value for a
single pixel

i Validation

= All formulations should provide same value
= Can verify barycentric properties

a+a,+a; =1
0<a,a,,3,<1

Copyright 2013. Alla Sheffer, UBC Page 16

16

Computer Graphics

* Shading

Computing lighting impact inside
triangle interior

i Shading

= Input to Scan Conversion:
= Vertices of triangles (lines, quadrilaterals...)
= Color (per vertex)
= Specified with glColor
= Or: computed with lighting
= World-space normal (per vertex)
= Left over from lighting stage

= Shading Task:
= Determine color of every pixel in the triangle

Copyright 2013. Alla Sheffer, UBC

Page 17

Scan Conversion- Polygons

17

Computer Graphics

i Shading

= How can we assign pixel colors using this
information?
= Easiest: flat shading

= Whole triangle gets one color (color of 15t
vertex)

= Better: Gouraud shading

= Linearly interpolate color across triangle
= Even better: Phong shading

= Linearly interpolate the normal vector

= Compute lighting for every pixel

= Note: not supported by rendering pipeline as
discussed so far

i Flat Shading

= Simplest approach: calculate illumination at
one point per polygon (e.g. center)

= Obviously inaccurate for smooth surfaces

Copyright 2013. Alla Sheffer, UBC

Page 18

Scan Conversion- Polygons

18

Computer Graphics Scan Conversion- Polygons

Flat Shading Approximations

= If an object really is faceted, is this accurate?

i Flat Shading Approximations

= If an object really is faceted, is this accurate?

= no!
= For point sources, direction

to light varies across the facet @
= For specular reflectance, §.

direction to eye varies across the facet

—

Copyright 2013. Alla Sheffer, UBC

Page 19

19

Computer Graphics Scan Conversion- Polygons

i Improving Flat Shading

= What if we evaluate Phong lighting
model at each pixel of the polygon?

= Better, but result still clearly
faceted

= Gouraud Shading: For smoother-

looking surfaces introduce vertex
normals at each vertex

= Used only for shading

= Think of as a better approximation
of the real surface that the
polygons approximate

= Usually different from facet normal \

.......

i Vertex Normals

= Vertex normals may be
= Provided with the model
= Computed from first principles

= Approximated by
averaging the normals
of the facets that
share the vertex

Copyright 2013. Alla Sheffer, UBC

Page 20

20

Computer Graphics

Scan Conversion- Polygons

02
this interior shading missed’!

i Gouraud Shading Artifacts

= Often appears dull, chalky
= Lacks accurate specular component

= if included, will be averaged over entire
polygon

this vertex shading spread
over too much area

= Mach bands

i Gouraud Shading Artifacts

= Eye enhances discontinuity in first derivative
= Very disturbing, especially for highlights

Copyright 2013. Alla Sheffer, UBC

Page 21

21

Computer Graphics

i Phong Shading

= linearly interpolating surface normal across
the facet, applying Phong lighting model at
every pixel

= Same input as Gouraud shading
= Pro: much smoother results
= Con: considerably more expensive

= Not the same as Phong lighting
= Common confusion

= Phong lighting: empirical model to calculate
illumination at a point on a surface

i Phong Shading

= Linearly interpolate the vertex normals
= Compute lighting equations at each pixel
= Can use specular component

#lights

Itotal = kalambient + Z Ii(kd (n . Ii)+ ks(v' I)nShi”y]
i=1

N, -

remember: normals used in
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

Copyright 2013. Alla Sheffer, UBC

Page 22

Scan Conversion- Polygons

22

Computer Graphics Scan Conversion- Polygons

i Phong Shading Difficulties

= Computationally expensive

= Per-pixel vector normalization and lighting
computation!

= Floating point operations required
= Lighting after perspective projection
= Messes up the angles between vectors
= Have to keep eye-space vectors around
= No direct support in standard rendering
pipeline
= But can be simulated with texture mapping,
procedural shading hardware (see later)

i Shading Artifacts: Silhouettes

= Polygonal silhouettes remain

Gouraud Phong

Copyright 2013. Alla Sheffer, UBC

Page 23

23

