Chapter 9

UBC
雨雨

Scan Conversion (part 2)Drawing Polygons on Raster Display

Using Implicit Edge Equations

Usage:

- Go over each pixel on screen
- To be efficient restrict to bounding rectangle
- Check if pixel is inside/outside of triangle
- Use sign of edge equations

Computing Edge Equations

- Implicit equation of a triangle edge:

$$
L(x, y)=\frac{\left(y_{e}-y_{s}\right)}{\left(x_{e}-x_{s}\right)}\left(x-x_{s}\right)-\left(y-y_{s}\right)=0
$$

- see Bresenham algorithm
- $L(x, y)$ positive on one side of edge, negative on the other
- Question:
- What happens for vertical lines?

Edge Equations

- Multiply with denominator
$L(x, y)=\left(y_{e}-y_{s}\right)\left(x-x_{s}\right)-\left(y-y_{s}\right)\left(x_{e}-x_{s}\right)=0$
- Avoids singularity
- Works with vertical lines
- What about the sign?
- Which side is in, which is out?

Edge Equations

- Determining the sign
- Which side is "in" and which is "out" depends on order of start/end vertices...
- Convention: specify vertices in counterclockwise order

Edge Equations

- Counter-Clockwise Triangles
- The equation $L(x, y)$ as specified above is negative inside, positive outside
- Flip sign:
$L(x, y)=-\left(y_{e}-y_{s}\right)\left(x-x_{s}\right)+\left(y-y_{s}\right)\left(x_{e}-x_{s}\right)=0$
- Clockwise triangles
- Use original formula
$L(x, y)=\left(y_{e}-y_{s}\right)\left(x-x_{s}\right)-\left(y-y_{s}\right)\left(x_{e}-x_{s}\right)=0$

Scan Conversion of Polygons

- Implicit formulation doesn't work for non-convex polygons
- Require per pixel, per edge computation
- Observation:
- Straight line intersection with polygon $=$ set of segments
- Alternative: algorithm based on scan-line/edge intersections

- Works for general polygons
- Less per pixel computations

Scan Conversion of Polygons

- General Algorithm
- Intersect each scanline with all edges
- Sort intersections in x
- Calculate parity to determine in/out
- Fill the 'in' pixels
- Efficiency improvement:
- Exploit row-to-row coherence using "edge table"

Edge Walking

- Special case: Scan-converting a trapezoid
- Exploit continuous L and R edges
- Predict intersections from one line to next

$$
\operatorname{scanTrapezoid}\left(x_{L}, x_{R}, y_{B}, y_{T}, \Delta x_{L}, \Delta x_{R}\right)
$$

Edge Walking Triangles

Issues

- Many applications have small triangles
- Setup cost is non-trivial
- Clipping triangles produces non-triangles
- Can be avoided through re-triangulation

Discussion

- Old hardware:
- Use edge-walking algorithm
- Scan-convert edges, then fill in scanlines
- Compute interpolated values by interpolating along edges, then scanlines
- Requires clipping of polygons against viewing volume
- Faster if you have a few, large polygons
- Possibly faster in software

Discussion:

- Modern GPUs:
- Use edge equations
- Plus plane equations for attribute interpolation
- No clipping of primitives required
- Faster with many small triangles
- Additional advantage:
- Can control the order in which pixels are processed
- Allows for more memory-coherent traversal orders
- E.g. tiles or space-filling curve rather than scanlines

Rasterization Issues
 (Independent of Algorithm)

- Exactly which pixels should be lit?
- Those pixels inside the triangle edge (of course)
- But what about pixels exactly on the edge?
- Don't draw them: gaps possible between triangles
- Draw them: order of
 triangles matters

Computer Graphics

Scan Conversion- Polygons

Triangle Rasterization Issues

- Shared Edge Ordering

- Need a consistent (if arbitrary) rule
- Example: draw pixels on left or top edge, but not on right or bottom edge

Triangle Rasterization Issues

- Moving Slivers

Triangle Rasterization Issues

- These are ALIASING Problems
- Problems associated with representing continuous functions (triangles) with finite resolution (pixels)
- More on this problem when we talk about sampling...

Values in the interior

Barycentric coordinates

Interpolation - access triangle interior

- Interpolate between vertices:
- Z
- r,g,b - colour components
- u,v - texture coordinates
- N_{x}, N_{y}, N_{z} - surface normals
- Equivalent
- Barycentric coordinates
- Bilinear interpolation
- Plane Interpolation

Barycentric Coordinates

- Area

$$
A=\frac{1}{2}\left\|{\overrightarrow{P_{1} P}}_{2} \times \overrightarrow{P_{1} P_{3}}\right\|
$$

- Barycentric coordinates
$a_{1}=A_{P_{2} P_{3} P} / A, a_{2}=A_{P_{3} P_{1} P} / A$,
$a_{3}=A_{P_{1} P_{2} P} / A$, $P=a_{1} P_{1}+a_{2} P_{2}+a_{3} P_{3}$

Barycentric Coordinates

-weighted combination of vertices

$$
\begin{aligned}
& P=a_{1} \cdot P_{1}+a_{2} \cdot P_{2}+a_{3} \cdot P_{3} \\
& a_{1}+a_{2}+a_{3}=1 \\
& 0 \leq a_{1}, a_{2}, a_{3} \leq 1
\end{aligned}
$$

Alternative formula:
 Bi-Linear Interpolation

- Interpolate quantity along L and R edges
- (as a function of y)
- Then interpolate quantity as a function of x

Bi-Linear Interpolation

- Most common approach, and what OpenGL does
- Perform Phong lighting at the vertices
- Linearly interpolate the resulting colors over faces
- Along edges
- Along scanlines
- Equivalent to

edge: mix of cl, c3

Another Alternative:

Plane Equation

- Observation: Values vary linearly in image plane
- E.g.: r = Ax + By + C
- $r=$ red channel of the color
- Same for g, b, Nx, Ny, Nz, z...
- From info at vertices we know:
$r_{1}=A x_{1}+B y_{1}+C$
$r_{2}=A x_{2}+B y_{2}+C$
$r_{3}=A x_{3}+B y_{3}+C$
- Solve for A, B, C
- One-time set-up cost per triangle \& interpolated value

Discussion

- Which algorithm (formula) to use when?
- Bi-linear interpolation
- Together with trapezoid scan conversion
- Plane equations
- Together with implicit (edge equation) scan conversion
- Barycentric coordinates
- Too expensive in current context
- But: method of choice for ray-tracing
- Whenever you only need to compute the value for a single pixel

Validation

- All formulations should provide same value
- Can verify barycentric properties

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}=1 \\
& 0 \leq a_{1}, a_{2}, a_{3} \leq 1
\end{aligned}
$$

Computing lighting impact inside triangle interior

Shading

- Input to Scan Conversion:
- Vertices of triangles (lines, quadrilaterals...)
- Color (per vertex)
- Specified with glColor
- Or: computed with lighting
- World-space normal (per vertex)
- Left over from lighting stage
- Shading Task:
- Determine color of every pixel in the triangle

Shading

- How can we assign pixel colors using this information?
- Easiest: flat shading
- Whole triangle gets one color (color of $1^{\text {st }}$ vertex)
- Better: Gouraud shading
- Linearly interpolate color across triangle
- Even better: Phong shading
- Linearly interpolate the normal vector
- Compute lighting for every pixel
- Note: not supported by rendering pipeline as discussed so far

Flat Shading

- Simplest approach: calculate illumination at one point per polygon (e.g. center)

- Obviously inaccurate for smooth surfaces

Flat Shading Approximations

- If an object really is faceted, is this accurate?

Flat Shading Approximations

- If an object really is faceted, is this accurate?
- no!

- For point sources, direction to light varies across the facet
- For specular reflectance, direction to eye varies across the facet

Improving Flat Shading

- What if we evaluate Phong lighting model at each pixel of the polygon?
- Better, but result still clearly faceted
- Gouraud Shading: For smootherlooking surfaces introduce vertex normals at each vertex
- Usually different from facet normal
- Used only for shading
- Think of as a better approximation of the real surface that the polygons approximate

Gouraud Shading Artifacts

- Often appears dull, chalky
- Lacks accurate specular component
- if included, will be averaged over entire polygon

Gouraud Shading Artifacts

- Mach bands
- Eye enhances discontinuity in first derivative
- Very disturbing, especially for highlights

Phong Shading

- linearly interpolating surface normal across the facet, applying Phong lighting model at every pixel
- Same input as Gouraud shading
- Pro: much smoother results
- Con: considerably more expensive
- Not the same as Phong lighting

- Common confusion
- Phong lighting: empirical model to calculate illumination at a point on a surface

Phong Shading Difficulties

- Computationally expensive
- Per-pixel vector normalization and lighting computation!
- Floating point operations required
- Lighting after perspective projection
- Messes up the angles between vectors
- Have to keep eye-space vectors around
- No direct support in standard rendering pipeline
- But can be simulated with texture mapping, procedural shading hardware (see later)

Shading Artifacts: Silhouettes

- Polygonal silhouettes remain

Gouraud

Phong

