Computer Graphics

Illumination Models

Computer Graphics

Illumination Models

Computer Graphics

Illumination Models

Diffuse Lighting Examples

- Lambertian sphere from several lighting angles:

Computer Graphics

Empirical Approximation

- Snell's law = perfect mirror-like surfaces
- But ..
- few surfaces exhibit perfect specularity
- Gaze and reflection directions never EXACTLY coincide
- Expect most reflected light to travel in direction predicted by Snell's Law
- But some light may be reflected in a direction slightly off the ideal reflected ray
- As angle from ideal reflected ray increases, we expect less light to be reflected

Calculating Phong Lighting

- compute cosine term of Phong lighting with vectors

$$
\mathbf{I}_{\text {specular }}=\mathbf{k}_{\mathrm{s}} \mathbf{I}_{\text {light }}(\mathbf{V} \bullet \mathbf{r})^{n_{s}}
$$

- v: unit vector towards viewer/eye
- r : ideal reflectance direction (unit vector)
- k_{s} : specular component = highlight color
- $I_{\text {light }}:$ incoming light intensity

Computer Graphics

Light Sources

- Point source
- light originates at a point
- Rays hit planar surface at different angles
- Parallel source
- light rays are parallel
- Rays hit a planar surface at identical angles
- Can model as point source at infinity
- Directional light

Light Sources

- Area source
- Light originates at finite area in space.
- In-between point and parallel sources
- Spotlights
- position, direction, angle

Ambient light (environment light)

- Hack for replacing true global illumination
- (light bouncing off from other objects)

Computer Graphics

Illumination Models

Light Source Falloff

- Quadratic falloff (point- and spot lights)
- Brightness of objects depends on power per unit area that hits the object
- The power per unit area for a point or spot light decreases quadratically with distance

Light Source Falloff

- Non-quadratic falloff
- Many systems allow for other falloffs
- Allows for faking effect of area light sources
- OpenGL / graphics hardware
- I_{0} : intensity of light source
- x: object point
- r: distance of light from \mathbf{x}

$$
I_{i n}(\mathbf{x})=\frac{1}{a r^{2}+b r+c} \cdot I_{0}
$$

Lighting in OpenGL

- Light source: amount of RGB light emitted
- value = percentage of full intensity, e.g., (1.0,0.5,0.5)
- every light source emits ambient, diffuse, and specular light
- Materials: amount of RGB light reflected
- value represents percentage reflected e.g., (0.0,1.0,0.5)
- Interaction: multiply components
- Red light $(1,0,0) \times$ green surface $(0,1,0)=$ black ($0,0,0$)

Computer Graphics

Lighting in OpenGL

glLightfv(GL_LIGHTO, GL_AMBIENT, amb_light_rgba); glLightfv(GL_LIGHTO, GL_DIFFUSE, dif_light_rgba); glLightfv(GL_LIGHTO, GL_SPECULAR, spec_light_rgba); gILightfv(GL_LIGHTO, GL_POSITION, position); gIEnable(GL_LIGHTO);
glMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba); glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba); gIMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba); glMaterialfv(GL_FRONT, GL_SHININESS, n);

Light Sources - OpenGL

- Specify parameters
glLightfv(GL_LIGHTi,GL_POSITION,light[])
i - between 0 \& 8 (or more)
- Directional $\left[\begin{array}{lll}x & y & z\end{array}\right]$
- Point source $\left[\begin{array}{llll}x & y & z & 1\end{array}\right]$
- Spotlight has extra parameters:
- GL_SPOT_DIRECTION, GL_SPOT_EXPONENT, GL_SPOT_CUTOFF
- Area source - too complex for projective pipeline (e.g. OpenGL)

