

Copyright 2013, Alla Sheffer, UBC

Illumination Models

Light

- Light has color
- Interacts with object color (r,g,b)

$$\begin{split} I &= I_a k_a \\ I_a &= (I_{ar}, I_{ag}, I_{ab}) \\ k_a &= (k_{ar}, k_{ag}, k_{ab}) \\ I &= (I_r, I_g, I_b) = (I_{ar} k_{ar}, I_{ag} k_{ag}, I_{ab} k_{ab}) \end{split}$$

- Blue light on white surface?
- Blue light on red surface?

Light Source Falloff

- Non-quadratic falloff
- Many systems allow for other falloffs
- Allows for faking effect of area light sources
- OpenGL / graphics hardware
 - I_o: intensity of light source
 - x: object point
 - r: distance of light from x

$$I_{in}(\mathbf{x}) = \frac{1}{ar^2 + br + c} \cdot I_0$$

Lighting in OpenGL

- Light source: amount of RGB light emitted
 - value = percentage of full intensity, e.g., (1.0,0.5,0.5)
 - every light source emits ambient, diffuse, and specular light
- Materials: amount of RGB light reflected
 - value represents percentage reflected e.g., (0.0,1.0,0.5)
- Interaction: multiply components
 - Red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

In OpenGL

- k_a, k_d, k_s surface color (RGB)
- Modify by glMaterialfv(GL_FRONT_AND_BACK, pname, RGB[])
- pname GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR
- Light source properties (also RGB) glLightfv(GL_LIGHTi,pname,light[])

Illumination Models

Lighting in OpenGL

glLightfv(GL_LIGHT0, GL_AMBIENT, amb_light_rgba); glLightfv(GL_LIGHT0, GL_DIFFUSE, dif_light_rgba); glLightfv(GL_LIGHT0, GL_SPECULAR, spec_light_rgba); glLightfv(GL_LIGHT0, GL_POSITION, position); glEnable(GL_LIGHT0);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba); glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba); glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba); glMaterialfv(GL_FRONT, GL_SHININESS, n);

Light Sources - OpenGL

- Specify parameters glLightfv(GL_LIGHTi,GL_POSITION,light[]) i – between 0 & 8 (or more)
- Directional [x y z 0]
- Point source [x y z 1]
- Spotlight has extra parameters:
 - GL_SPOT_DIRECTION, GL_SPOT_EXPONENT, GL_SPOT_CUTOFF
- Area source too complex for projective pipeline (e.g. OpenGL)

Lighting in Rendering Pipeline

- Notes:
 - Lighting is applied to every vertex
 - i.e. the three vertices in a triangle
 - Per-vertex lighting
 - Will later see how the interior points of the triangle obtain their color
 - This process is called shading
 - Will discuss in the context of scan conversion