Computer Graphics Transformations:
Viewing & Perspective

. . . UBC
* Rendering Pipeline &
Geometry Processing

Rt st i st o |
!
Viewing/Perspective |
Transformations

Rasterization Fragment Processing

transformations

= Specify view point (change of coordinate system)
= Project from 3D to 2D (introduce perspective)

* Rendering Pipeline * Rendering Pipeline
Scene graph - I . i Scene graph = result
Object geometry |8 &8 & !] Object geometry . .
e = all vertices of scene in shared
' Modelling 1 Modelling H
! Trasforms! e L 3D world coordinate system
S L s
" Viewing 1 " Viewing 1
L Transform | L Transform |
I Projection 1 I Projection |
L Transform | =4 L Transform |
. . UBC . - UBC
* Rendering Pipeline &7 * Rendering Pipeline 7
Scene graph = result Scene graph = result
Object geometry . . . Object geometry .
" = Scene vertices in 3D view - = 2D screen coordinates of

' Modelling H

Transforms

! ! Mode7//71g_ H
L Transforms ;

I 1
L Transforms |

clipped vertices

==Y,
' Viewing

I 1
L Transform |

Viewing
Transform

______ -
|

I Projection

1
L Transform |

Projection
Transform

Copyright 2013, A. Sheffer, UBC

Computer Graphics

Projective Rendering Pipeline

glVertex3f(x,y,z)
IFrustum(...
ocs wCs ves 9)
__| modeling viewing
transformation transformation

projection
Transformation/|
perspective
Division

glTranslatef(x,y,z) gluLookAt(...)
glRotatef(th,x,y,z)

) _ NDCS
OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

viewport
NDCS - normalized device coordinate system transformation
DCS - device coordinate system DCS

glutinitWindowSize(x,y)
glViewport(...);

Transformations:

Viewing & Perspective

Basic Viewing

= Starting spot - OpenGL
= camera at world origin
= probably inside an object
= Yy axis is up
= looking down negative z axis
= why? RHS with x horizontal, y vertical, z out of screen
= To position — coordinate frame change
= Intuitive description
= eye point, gaze/lookat point, up‘vector

Y /

Camera Description/Motion

= arbitrary viewing position
= eye point, gaze/lookat point, up vector

lookat
y ®
X Pref
WCS
up
Z /
eye @
v Peye

:-’ From World to View Coordinates: W2V '

= translate eye to origin
= rotate vector (lookat — eye) to w axis
= rotate around w to bring up into vw-plane

lookat
y ®
X Pref
WCS

VCS up
z Y

ey

u
w Peye

:- Deriving W2V Transformation
= M=RT
. t=up u o u u 0 100 —&y
. v, v, v, O 010 -e
= g=view R= g T= y
B W, wy,ow, 0 001 -e
= e=eye 0 0 0 1 000 1
_ Ixw
lexwl v=wxu
wW=-0= 1
HQH u u, u, Of1 00 -ef [u u u -ue
v, v, v, 0/0 1 0 -e Ve v, v, -—vee
M B R T vV Wy Ve
world—>view |w, w, w, 0/0 0 1 -e | [w, w, w, —we
[,v-p 0 0 0 1j0 0 0 1 0 0 O 1
camtrans

Copyright 2013, A. Sheffer, UBC

:-| OpenGL Viewing Transformation

gluLookAt(ex,ey,ez,Ix,ly,1z,ux,uy,uz)

= postmultiplies current matrix, so to be safe:

gIMatrixMode (GL_MODELVIEW);
glLoadldentity();
gluLookAt(ex,ey,ez,Ix,ly,1z,ux,uy,uz)
// now ok to do model transformations

Computer Graphics Transformations:
Viewing & Perspective

‘_:| Projection Transformations

Projective Rendering Pipeline

glVertex3f(x,y,z) = Question: How to draw 3D object on
glFrustum(...) 2D screen?
ocs __WCs = VCS _ orthographic view volume = If we ignore perspective (viewer at
_| modeling viewing projection infinity)
transformation transformation Transformation/ Y

perspective = Project transformed object along Z

glTranslatef(x,y,z) gluLookAt(...)

glRotatef(th,x,y,z) Division y axis onto XY plane - and from there
Z/& to screen (clipped)

OCS - object coordinate system NDCS ves = Canonical orthographic projection:
WCS - world coordinate system viewport 1000
VCS - viewing coordinate system P N 0100
NDCS - normalized device coordinate system transformation 0000

DCS - device coordinate system DCS

0001
glutinitWindowSize(x,y) = |n practice “ignore” z axis — use x and y

coordinates for screen coordinates

Clipping: View Volumes

:-’ Understanding Z

= Z axis flip changes coord system handedness
= RHS before projection (eye/view coords)
= LHS after projection (clip, norm device coords)

= specifies field-of-view, used for clipping
= restricts domain of Zz stored for visibility test

orthographic view volume

NDCS

UBC

Understanding Z Orthographic Derivation

= why near and far plane? = scale, translate, reflect for new coord sys
= near plane: . y=top—>y'=1
= avoid singularity for perspective projection y=a-y+ y= bot —> y.: -1
(division by zero, or very small numbers)
= far plane: NDCS
= store depth in fixed-point representation
(integer), thus have to have fixed range of
values (0...1)
(-1,-1,-1)

= avoid/reduce numerical precision artifacts for
distant objects

y=bottom

zZ=-near

Copyright 2013, A. Sheffer, UBC

Computer Graphics

Orthographic Derivation

= scale, translate, reflect for new coord sys

2 0 0 _right +left |
right —left right —left
0 2 0 _ top +bot
p— top —bot top—bot |p
0 0 -2 _ far +near
far —near far —near
L 0 0 0 1 |

Transformations:

Viewing & Perspective

* Orthographic OpenGL

gIMatrixMode(GL_PROJECTION);
glLoadldentity();
glortho(left,right,bot,top,near,far);

* NDC to Viewport Transformation

= generate pixel coordinates

= map X, y from range —1...1 (NDC) to pixel
coordinates on the display

= involves 2D scaling and translation

(w,h)

yoooay display

viewport

1-1)

OpenGL ©0
glViewport(x,y,a,b);

* Origin Location

= yet more possibly confusing conventions
= OpenGL: lower left
= most window systems: upper left

= often have to flip your y coordinates
= when interpreting mouse position

* Perspective Projection

= Viewing is from point at ¢
finite distance -

= Without loss of generality: M
= Viewpoint at origin P’ °
= Viewing (near) plane is

7=n oy 2Y)

projectors,

= Given P=(x,y,z) triangle %=X,
similarity gives: :

center of Z=n 7
projection

Copyright 2013, A. Sheffer, UBC

* Perspective Projection (cont’d)

= In matrix notation with homogeneous
coordinates:

= In Euclidean coordinates:

= P singular: det(P)=0

Computer Graphics Transformations:
Viewing & Perspective

UBC UBC
Perspective Projection (cont'd) &7 * How to make non-degenerate? (%7

= What is (if any) is the difference between:

= Moving projection plane
@ = Moving viewpoint (center of projection)?

camtrans

X x4

= Z' monotonically increasing function of z

* Perspective Projection * Introduce Far Plane

= Have both near and far planes = Matrix formulation
= Transformation well defined in-between
= Conversion to device coordinates
= Warp view frustum to box

X X

= Preserves relative depth (third coordinate)

* Alternative Formulation

= Before

= After (cancel division by n)

y=bottom z=-near

x=right

Copyright 2013, A. Sheffer, UBC

Computer Graphics Transformations:

Viewing & Perspective

* Perspective Derivation (full) & * Perspective OpenGL
= Solve linear system to get A-F gIMatrixMode(GL_PROJECTION);
=6 planes, 6 unknowns glLoadldentity();
x1TE o A ox] [2n 0 r+l 0] glFrustum(left,right,bot, top,near,far);
y' _ 0 F B Oy _ _ or
VZV', g g fl 'z : r- n tl’+t|) glPerspective(fov,aspect,near,far);
0 ﬁ ﬁ 0 = Symmetric version using
- (f_+ N —2fn field-of-view angles
0 = In x-direction (fov) a
f—n f-n = In y-direction (fovy) given
0 0 -1 0 by aspect ratio

* Another Transformations Quiz

= What does each transformation preserve?

Copyright 2013, A. Sheffer, UBC

