Virtua Fighter 1995 Dead or Alive 3 2001 Nalu 2004
(SEGA Corporation) (Tecmo Corporation) (NVIDIA Corporation)
NV1 Xbox (NV2A) GeForce 6

K

Lt

Programmable GPUs

-

. ~ [Ty,
Medusa 2008 Real-Time Dynamic

Human Head 2006

(NVIDIA Corporation) (NVIDIA Corporation) Fracture 2013
GeForce 7 GeForce GTX 200 (NVIDIA Corporation)
GeForce GTX 700

UBC UBC
L | GPUs vs CPUS == (GPUs vs CPUs ==
[§ o
= 4500 GFLOPS vs ~500 GFLOPS = 290 GB/s vs 60 GB/s
e i i
Tt e S T et i ot & B e e —— £
S UBC L UBC
JFrogrammable Pipeline & l JFrogrammable Pipeline ==
s K
= so far: = now: programmable rendering pipeline!
= rendering pipeline = set of stages with fixed
functionality vertex shader
Geometry Model/View .| Lighting || Perspective | || Clipping
G Model/View Perspective Database Transform. Transform.
D:;“I;::z Transform. [HOMRG = ponctorm, [CliPPing —|
Scan Depth Frame-
Scan Depth Frame- Conversion [TeXturing [+ SR | Blending buffer
Conversion [~ Texturing — Test || Blending buffer

fragment shader

L Vertex Shader 7 l Vertex Shader
e | e
= Common Inputs:
= vertex position
= Normal texture coordinate(s)

= Modelview and projection matrix

= Run once for every vertex in your scene:
= Common Functionality:
=« Performs viewing transforms (MVP)
= Transforms texture coordinates = Vertex Material or color
= Calculates per-vertex lighting = Light sources — color, position, direction etc.
= A “ve_rtex” is a malleable definition, you can = Common Outputs:
ggsesréﬂgﬁnyifizgor:? pretty much any = Clip-space vertex position (mandatory)
= transformed texture coordinates
= vertex color

UBC
L Vertex Shader - Applications S l Fragment Shader
[[
ol 4 ol 4
= deformable surfaces — on the fly vertex = Runs for all “initialized” fragments:
position (.:orr.1putat|on = “initialized” — rendered to after rasterization
= e.g. skinning

= Common Tasks:
= texture mapping
= Shading

= Synonymous with Pixel Shader

[courtesy NVIDIA]

ragment Shader
LF
ol 1

.

= input (interpolated over primitives by
rasterizer):

= Fragment coordinates (mandatory)
= texture coordinates
= color

= output:
= fragment color (mandatory)
= fragment depth

Not really shaders, but very similar to NPR! GPU raytracing, NVIDIA
A Scanner Darkly, Warner Independent Pictures

UBC
L Vertex & Fragment Shader "m
[:
= massively parallel computing by parallelization
= same shader is applied to all data (vertices or
fragments) — SIMD (single instruction multiple
data)
= parallel programming issues:
= main advantage: high performance
= main disadvantage: no access to neighboring
vertices/fragments
UBC
GLsL 7
s
= We are using GLSL:
= C-like programming language for GPUs
= Highly Parallel (SIMD)
= Differs greatly between versions
UBC
GLSL - Types &,
‘ I
= 1

= Has all the basic C types

= Has “vector” types: vec2, vec3, vec4
= Has “matrix” types: mat2, mat3, mat4
= Has “sampler” types

= Used for reading data from textures and
framebuffers

= (might be worthwhile looking into for
Assignment 4)

= Look at these links for more info:
= http://www.opengl.org/wiki/Data_Type_%28GLSL%29
= http://www.opengl. iki pler_%28GLSL%: pler_types

UBC
l IShader Languages &7y
e a
= Many languages exist to write shaders:
= GLSL — GL Shading Language (Opengl)
= HLSL — High Level Shading Language
(Direct3D)
= CG (Nvidia mid-level language for b
E Cgrems :
UBC

Program Object

0 Uniform Buffer Object
7

MR
- J
o [1 2]33

Uniform Buffer Binding Points

OpenGL
Context

e arcsynihess or (9gFulPosiloning/UBOCortexBindrg g

| | GLSL - Built in Variables Lo
[i

= GLSL has some variables built in

= These variables are always there and
accessible in the corresponding shader

= Vertex Shader
= In: gl_Vertex (position), gl_Normal, gl_Color
= Out: gl_Position

= Fragment Shader
= In: glFragCoord (fragment location), gl_Color
= Out: gl_FragColor, gl_FragDepth

IC
=]
0

]
i)

2

L GLSL — Built in Variables
[-

= Accessible in all shaders:
= gl_ModelViewMatrix
= gl_ModelViewProjectionMatrix
= gl_ProjectionMatrix

= Here is a quick reference guide:
= http://mew.cx/gls|_quickref.pdf

LGLSL Example — Fragment Shader 4B
[§

= Fragment Shader: color green

#version 200
void main()

I/l color rendered fragments green
gl_FragColor = vec4(0.0, 1.0, 0.0, 1.0);
}

UBC

lGLSL Example — Uniform Variables G
1

F
I

l GLSL Example — Vertex Shader
[§ -

= Vertex Shader: scale vertices

#version 200
void main()

Il scale passed in vertex

vec4 a = gl_Vertex;
ax=ax*15;
ay=ay*15;

/I transform vertex
gl_Position = gl_ModelViewProjectionMatrix * a;
}

i
1
3
g
H
£
3
2
H
H
g
3
H
3
E
i
H

[

| |, GLSL — Uniform Variables =
=

= Used to access data from the CPU on the
GPU

= Need to be given a value from the openGL
side

Program Object

Uniform Buffer Object

Blck Index 0
Block By

Sk i 1 \
ok B 1 |
. pa
slUifonBlockBinding)
N/
openGL| [0] [2 [3 [
Context Uniform Buffer Binding Points

[

l ESLSL Example — Uniform Variables %
al 1

= Within shader:

#version 200

uniform float specIntensity;
uniform vec4 specColor;
uniform float t;

uniform vec4 colors;

void main()

/I do something

}

[

L GLSL — Samplers
- 1

= A type of uniform used to read from a
texture within shaders

= There are different samplers for the
different types of textures

= 2D textures store square textures

= Rectangle textures store non-square
textures, such as the image being
processed in A4

UBC
L , OpenGL the old and the new 7y
s

GL12-21 GL3.0-44
Vertex Shader Vertex Shader
Pixel Shader Tessellation (Control) Shader

Tessellation Evaluation/Hull Shader
Geometry Shader

Fragment Shader

... Compute Shader

L , OpenGL 3.0+ changes
w1

.

= Removed many of the GLSL built in
variables

= Removed GLSL/Opengl built in matrices

= Removed glVertex(), glColor, glTexCoord,
glMaterial(), ...

-~

UBC
L , OpenGL Error CheckM
e a

= When Things go Wrong:
= Opengl wont tell you
= To ask, call glGetError() Y

= Tells you the gl state (ok, error, etc)

= For A4, this is all done for you, but you
will need to break before the end of the
program to read the output (in the black
terminal)

l . OpenGL updated graphics pipeline
=l 1
==

Tesdellation |

| .

L , OpenGL 3.0+ changes
i

= Efficiency
= in most cases you don't need everything
= lots of computation wasted checking what
applies
= Control

= With less dictated, shaders can be used to do
more

L , OpenGL 3.0+ Advanced Pipeline G l , OpenGL 3.0+ Advanced Pipeline O
L =

= Tesselaton Control shader
= Synonymous with Tesselation shader (d3d
= Subdivide geometry based on vertices

= Geometry Shaders
= Perform operations on groups of vertices

= Compute Shaders
= Use the GPU to do math for you (no rendering)

= This executes after the geometry shader,
replacing the rest of the pipeline

= Tesselation Evaluation
= Synonymous with Hull shader (d3d)
= Rearrange new vertices from tesselation control

‘IC
& =)
o

[

B L .GPGPU Applications l References and Resources i
, . wl 1

® http://www.opengl.org/wiki/Uniform_%28GLSL%29

Fame Fractals X . ® http://www.lighthouse3d.com/tutorials/gls|-tutorial/uniform-variables/
® http://www.opengl.org/wiki/Rendering_Pipeline_Overview

P http://www.davidcornette.com/glsl/glsl.html

P http://nehe.gamedev.net/article/gls|%20an%20introduction/25007/
WP feealerntion Sokfens ® http://www.opengl.org/wiki/Data_Type_%28GLSL%29

’ ¥ http://www.opengl.org/wiki/Sampler_%28GLSL%294#Sampler_types
¥ http://zach.in.tu-clausthal.de/teaching/cg_literatur/gls|_tutorial/

[courtesy NVIDIA]

http://zach.in.tu-clausthal.de/teaching/cg_literatur/glsl_tutorial/

