Computer Graphics Transformations

* Chapter 3

Transformations

i The Rendering Pipeline

[Geometry Processing

>---- ’.-

Rasterization Fragment Processing

Copyright 2012, A. Sheffer, UBC

Computer Graphics

i Transformations

= Transformation = one-to-one
and onto mapping of R" to itself
» Affine transformation — T(v) = Av+b
= A — matrix
= V, b — vectors
=« In 2D:

MEN i

i Geometric Transformations

» Geometric Transformation = affine
transformation with geometric meaning

= Mathematically transformations are defined
on vectors = for point P, use vector P-Origin

Copyright 2012, A. Sheffer, UBC

Transformations

Computer Graphics Transformations

i Applications

B
= Viewing (more later) <]
L3 :_:

u MOdellng 2,55, 56 L v

32

31 L1

= Articulation Luxo

i Modeling Transformations: sylabus{

= 2D Transformations
Homogeneous Coordinates
3D Transformations
Composing Transformations
Transformation Hierarchies
Transforming Normals
Assignment 2 — Cats

= Use transformations to create and animate
cats made from ellipsoids

Copyright 2012, A. Sheffer, UBC

Computer Graphics Transformations

* Transformations

= Transforming an object = transforming all its
points

= Transforming a polygon = transforming its

i@‘ﬁ?ﬁ ‘ . é

Translatlon

Mﬁ

= Translation operator 7 with parameters (%,¢,):

T (t, ,ty) (V) _ (Vx +txj
vV, +ty

= How can we write this in matrix form?

Copyright 2012, A. Sheffer, UBC

Computer Graphics

Transformations

Scaling

e

X

y

S,V
S(sx,sy)(v):[X x}
SyVy

A e M

J — vector in XY plane

= Scaling operator S with parameters (s,.s,):

i Scaling

= Matrix form:
S(sx,sy)(v) _ Sx 0
{0 s,

= Independentin x and y

\'

Copyright 2012, A. Sheffer, UBC

Computer Graphics Transformations

Rotatlon (using high school trigo...)

w

ﬁa@& |

= Polar form:

V,) (rcosa
V= = .
vy | (rsina

= Rotating v counterclockwise by & to w:

We Wy | (rcos(a+6)) (rcosacosd-rsinasing
- wy | rsin(a+6) | | rcosasin @+rsin acosé

i Rotation

= Matrix form:
We cosd -sin@\rcosa B cosd -siné ’
“|sing cos@ | rsina| |sing cos@

= Rotation operator R (at the origin) with
parameter & &

RO~ cos¢d -sind
“|sing cos@

Copyright 2012, A. Sheffer, UBC

Computer Graphics Transformations

i Rotation Properties

= RO is orthonormal

R

= R-7-rotation by -6 is

R0 {cos(—é?) —sin(—H)}_{cosH sin 9}:(R9)_1

sin(~6) cos(-6)

—sin@ cosé

i Homogeneous Coordinates

= Can we unify translation, rotation & scale ?
= Yes - Represent translation T in matrix form
= Introduce homogeneous coordinates:

Vi | [V
V, L oh
V= —>Vi= vy (=l v,
v
y h
Vi, 1

Copyright 2012, A. Sheffer, UBC

Computer Graphics Transformations

Translation:
i Homogeneous Coordinates
= Conversion (projection) from homogeneous
space to Euclidean:

V) (vi/vh
V= =
vy)\ vy

= Projections is not 1:1

e

i Translation

= Using homogeneous coordinates, translation
operator may be expressed as:

1 0t (v, v, +t,
(ty.ty) _ _
THVO")=|0 1 t, v, |=|v,+t,
0 0 11 1

Copyright 2012, A. Sheffer, UBC

Computer Graphics Transformations

i Homogeneous Coordinates

cos(d) -—sin(d) O
Rotation =| sin(¢) cos(d) O
0 1

0
0
Scale = b
0

o O W
~ O O

Other ideas for uniform
scale?

i 3D Transformations

= All 2D transformations extend to 3D
= In homogeneous coordinates:

Scaling Translatio n Rotation around the z axis

s, 0 0 O 1 0 0t cosd -singd 0 O

gl _ 0 s, 00 TG _ 010t RO = sing cosd 0 O
1o 0 s, 0 oo 1t " |o0 0 10

0 0 0 1 0001 0 0 01

glScalef(a,b,c); glTranslatef(a,b,c); glRotatef(angle,0,0,1);

Copyright 2012, A. Sheffer, UBC

Computer Graphics

Transformations

i 3D Rotationin X, Y

around x axis: around y axis:

x| |1 0 0 0fx X' cosd 0 singd 0O x
y' B 0 cosd -sing Ofy y' 0 1 0 oy
2’| |0 sin@ cosd Oz 2| |=sing 0 cos® 0]z
1] 10 0 0 1]1 1 0 0 0 11

glRotatef(angle,1,0,0); glRotatef(angle,0,1,0);
= general OpenGL command

glRotatef(angle,x,y,z);

i Transformations Quiz

"

transformations

= What do these 2D
transformations do? 0 -1]

N
o
| I
|
©
= O
| |

Copyright 2012, A. Sheffer, UBC

10

Computer Graphics Transformations

i Transformations Quiz

= And these 2D homogeneous

ones?
0
|
-1
0
0

e

o O B+
O r O O Fr O

O O B+

i Transformation Composition

= What operation rotates XY by #around p :(pxj?
= Answer: ’

= Translate P to origin

= Rotate around origin by 6

= Translate back

B s

Copyright 2012, A. Sheffer, UBC

Computer Graphics

Transformations

i Transformation Composition

T(px,py) ReT (fpx,—py)(v)

1 0 p,
=10 1 p,
0O 0 1

cosd —-sind 01 0O —p, |V,
sing cosé 0|0 1 —p, v,
0 0 10 0 1 (1

= In general:

= Perform operation

coordinate system

i Compositing of Affine Transformations

= Transform geometry into coordinate system
where operation becomes simpler

» Transform geometry back to original

= Note: composition of affine transformations is
an affine transformation

Copyright 2012, A. Sheffer, UBC

12

Computer Graphics

Transformations

= 1b) Rotate object by ®

coordinate frame
» 2¢) Translate frame by t

i Compositing of Affine Transformations

= Two different interpretations of composite:
= 1) read from inside-out as transformation of object
« 1a) Translate object by —t

= 1¢) Translate object by t

= 2) read from outside-in as transformation of the

= 2b) Rotate frame by —® (i.e. rotate object by ®)
= 2a) Translate frame by —t

= Example scene:

i Compositing of Affine Transformations

B

Copyright 2012, A. Sheffer, UBC

13

Computer Graphics Transformations

i Compositing of Affine Transformations

= First Interpretation:
= Step 1: translate object by —t (move to origin)

i Compositing of Affine Transformations

= First Interpretation:
= Step 2: rotate object by ®

Copyright 2012, A. Sheffer, UBC

14

Computer Graphics Transformations

i Compositing of Affine Transformations

= First Interpretation:
= Step 3: translate object by t (move back)

Our composite example is a rotation
around an arbitrary 2D point with
position t!

i Compositing of Affine Transformations

= Example scene, second interpretation:

B

Copyright 2012, A. Sheffer, UBC

Computer Graphics Transformations

i Compositing of Affine Transformations

= Second interpretation:
» Step 1: translate frame (move origin to object)

i Compositing of Affine Transformations

= Second interpretation:

= Step 2: rotate frame by -® (i.e rotate obj. by
®)

Copyright 2012, A. Sheffer, UBC

16

Computer Graphics Transformations

i Compositing of Affine Transformations

= Second interpretation:

= Step 3: translate frame back (vector -t in new
framel!)

i Transformations Composition

= How to mirror through
arbitrary line in XY?

Copyright 2012, A. Sheffer, UBC

17

Computer Graphics Transformations

i Rotation About an Arbitrary Axis

» Axis defined by two points P, P,
= Translate point P, to the origin
= Rotate to align P, P, axis with z-axis (or x or

y)
= How?

= Perform rotation
= Undo aligning rotation(s)
= Undo translation

i 3D Transformations - Composition

= Does order matter?
« IsT,T,=T,T,?
= Is 5,8, =5,5,?
= Is R,R, = R,R,?

Copyright 2012, A. Sheffer, UBC

18

Computer Graphics

Transformations

1 dxa
dy1
T1=T(dxydys) =

1

1 dx1+ dx2
1 dyi .+ dy2
1

T2eTl=

1

i Composing Translations

P'=T2eP'=T2e[TleP]=[T2eT1]e P,where

T2=T(dxzdy2) =

Translations add

= scaling

SX1+ dX2

SY1«SYy2
1

S2eSl=

= rotation

cos(01+62) —sin(d1+62)

sin(61+62) cos(01+62)
R2eR1=

i Composing Transformations

scales multiply

rotations add

Copyright 2012, A. Sheffer, UBC

19

Computer Graphics Transformations

i Undoing Transformations: Inversess

T(x,y,2)* = T(-X,~y,~2)
T(Xx,Y,2) T(-x,-y,-2) = |

R(z,0)'= R(z—6) =R"(z,6) (Ris orthogonal)
R(z,0) R(z,-0) = |

1 11
-1 — S - -~
S(sx, sy, 52) (sx Y sz)
S(sx,sy,sz)S(i,i,i) =1
SX Sy sz

i Switching Coordinate Systems

Y 7 w
\V/
X \i
= Problem Formulation:

= Given two orthonormal coordinate systems XYZ and UVW
» Find transformation from UVW to XYZ
= Answer:

= Transformation matrix R whose columns are U,V,W (in
XYZ system):

uX
R= u, v, w
uZ

Copyright 2012, A. Sheffer, UBC

Computer Graphics Transformations

i Switching Coordinate Systems

= Proof:

= Similarly R(Y) =V & R(Z) =W

i Switching Coordinate Systems

= Inverse (=transpose) transformation R-1
provides mapping from UVW to XYZ

= E.Q.

= Comment: Used for mapping between XY and
arbitrary plane

Copyright 2012, A. Sheffer, UBC

Computer Graphics Transformations

i What each transformation preserves

Straight | parallel
lines lines

distance | angles

uniform
scaling
non-uniform
scaling

rotation

translation

shear

i Assignment 1 Marking

= Slots of 7 min each student:

= Use piazza linked doodle poll to select time blocks
= Signup sheet in next class + labs

Code must compile and run on lab machines
Timestamp: DON'T touch any files after deadline
Be there & be ready (arrive 10 min early)
Showcase your code & answer questions

= Explain what works, what doesn't, what extras you
added, etc...

Copyright 2012, A. Sheffer, UBC

22

