

Transformations

Transformations

- Transformation = one-to-one and onto mapping of Rⁿ to itself
- *Affine* transformation T(v) = Av + b
 - A matrix
 - v, b vectors
 - In 2D:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Geometric Transformations

 Geometric Transformation = affine transformation with geometric meaning

 Mathematically transformations are defined on vectors ⇒ for point P, use vector P-Origin

Transformations

Modeling Transformations: sylabus

- 2D Transformations
- Homogeneous Coordinates
- 3D Transformations
- Composing Transformations
- Transformation Hierarchies
- Transforming Normals
- Assignment 2 Cats
 - Use transformations to create and animate cats made from ellipsoids

Transformations

Transformations

- Transforming an object = transforming all its points
- Transforming a polygon = transforming its vertices

• Translation operator T with parameters (t_x, t_y) :

$$T^{(t_x,t_y)}(v) = \begin{pmatrix} v_x + t_x \\ v_y + t_y \end{pmatrix}$$

How can we write this in matrix form?

Transformations

Scaling

- $V = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$ vector in XY plane
- *Scaling* operator S with parameters (s_x, s_y) :

Scaling

Matrix form:

$$S^{(s_x,s_y)}(V) = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} s_x v_x \\ s_y v_y \end{pmatrix}$$

• Independent in x and y

Transformations

Rotation

Matrix form:

$$w = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} r \cos \alpha \\ r \sin \alpha \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} v$$

• Rotation operator R (at the origin) with parameter θ :

$$R^{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Transformations

Rotation Properties

• R^{θ} is orthonormal

$$\left(R^{\theta}\right)^{-1} = \left(R^{\theta}\right)^{T}$$

• $R^{-\theta}$ - rotation by $-\theta$ is

$$R^{-\theta} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = (R^{\theta})^{-1}$$

Homogeneous Coordinates

- Can we unify translation, rotation & scale ?
 - Yes Represent translation T in matrix form
- Introduce homogeneous coordinates:

$$v = \begin{pmatrix} v_x \\ v_y \end{pmatrix} \rightarrow v^h = \begin{pmatrix} v_x^h \\ v_y^h \\ v_w^h \end{pmatrix} = \begin{pmatrix} v_x \\ v_y \\ 1 \end{pmatrix}$$

Transformations

Translation: Homogeneous Coordinates

 Conversion (projection) from homogeneous space to Euclidean:

$$v = \begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} v_x^h / v_w^h \\ v_y^h / v_w^h \end{pmatrix}$$

Projections is not 1:1

$$\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0.5 \end{pmatrix} \text{ all project to } \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

Translation

 Using homogeneous coordinates, translation operator may be expressed as:

$$T^{(t_x,t_y)}(v^h) = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} v_x \\ v_y \\ 1 \end{pmatrix} = \begin{pmatrix} v_x + t_x \\ v_y + t_y \\ 1 \end{pmatrix}$$

Transformations

Homogeneous Coordinates

$$\mathbf{R}otation = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{S}cale = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Other ideas for uniform scale?

3D Transformations

- All 2D transformations extend to 3D
- In homogeneous coordinates:

Scaling

Translatio n

Rotation around the z axis

$$S^{(s_x,s_y,s_z)} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad T^{(t_x,t_y,t_z)} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R_z^{\theta} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

glScalef(a,b,c); glTranslatef(a,b,c); glRotatef(angle,0,0,1);

Transformations

3D Rotation in X, Y

around x axis:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

around y axis:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

glRotatef(angle,1,0,0);

glRotatef(angle,0,1,0);

general OpenGL command

glRotatef(angle,x,y,z);

Transformations Quiz

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$

Transformations

Transformations Quiz

And these 2D homogeneous ones?

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0.5 \end{bmatrix}$$

Transformation Composition

- What operation rotates XY by θ around $P = \begin{pmatrix} p_x \\ p_y \end{pmatrix}$?
- Answer:
 - Translate *P* to origin
 - Rotate around origin by θ
 - Translate back

Transformations

Transformation Composition

$$T^{(p_x,p_y)} R^{\theta} T^{(-p_x,-p_y)}(V)$$

$$= \begin{bmatrix} 1 & 0 & p_x \\ 0 & 1 & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -p_x \\ 0 & 1 & -p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ 1 \end{bmatrix}$$

Compositing of Affine Transformations

- In general:
 - Transform geometry into coordinate system where operation becomes simpler
 - Perform operation
 - Transform geometry back to original coordinate system
- Note: composition of affine transformations is an affine transformation

Transformations

Compositing of Affine Transformations

- Two different interpretations of composite:
 - 1) read from inside-out as transformation of object
 - 1a) Translate object by -t
 - 1b) Rotate object by Φ
 - 1c) Translate object by t
 - 2) read from outside-in as transformation of the coordinate frame
 - 2c) Translate frame by t
 - 2b) Rotate frame by $-\Phi$ (i.e. rotate object by Φ)
 - 2a) Translate frame by -t

Transformations

Rotation About an Arbitrary Axis

- Axis defined by two points P₁ P₂
- Translate point P₁ to the origin
- Rotate to align P₁ P₂ axis with z-axis (or x or y)
 - How?
- Perform rotation
- Undo aligning rotation(s)
- Undo translation

3D Transformations - Composition

- Does order matter?
 - Is $T_1T_2 = T_2T_1$?
 - Is $S_1S_2 = S_2S_1$?
 - Is $R_1 R_2 = R_2 R_1$?
 - Is $S_1R_2 = R_2S_1$?

Transformations

Composing Translations

$$T1 = T(dx_1, dy_1) = \begin{bmatrix} 1 & dx_1 \\ 1 & dy_1 \\ & 1 \\ & & 1 \end{bmatrix}$$

$$T2 = T(dx_2, dy_2) = \begin{vmatrix} 1 & dx_2 \\ 1 & dy_2 \\ & 1 \\ & & 1 \end{vmatrix}$$

$$P'' = T2 \bullet P' = T2 \bullet [T1 \bullet P] = [T2 \bullet T1] \bullet P, where$$

$$\begin{bmatrix} 1 & dx_{1+} dx_{2} \end{bmatrix}$$

$$T2 \bullet T1 = \begin{bmatrix} 1 & dx_1 + dx_2 \\ 1 & dy_1 + dy_2 \\ 1 & 1 \end{bmatrix}$$

Translations add

Composing Transformations

scaling

$$S2 \bullet S1 = \begin{bmatrix} sx_1 * dx_2 \\ & sy_1 * sy_2 \\ & & 1 \\ & & & 1 \end{bmatrix}$$
 scales multiply

rotation

$$R2 \bullet R1 = \begin{bmatrix} \cos(\theta 1 + \theta 2) & -\sin(\theta 1 + \theta 2) \\ \sin(\theta 1 + \theta 2) & \cos(\theta 1 + \theta 2) \\ & & 1 \\ & & & 1 \end{bmatrix}$$
 rotations add

Transformations

Undoing Transformations: Inverses

$$\mathbf{T}(x,y,z)^{-1} = \mathbf{T}(-x,-y,-z)$$

$$\mathbf{T}(x,y,z)\;\mathbf{T}(-x,-y,-z)=\mathbf{I}$$

$$\mathbf{R}(z,\theta)^{-1} = \mathbf{R}(z,-\theta) = \mathbf{R}^{\mathrm{T}}(z,\theta)$$
 (R is orthogonal)

$$\mathbf{R}(z,\theta) \mathbf{R}(z,-\theta) = \mathbf{I}$$

$$\mathbf{S}(sx, sy, sz)^{-1} = \mathbf{S}(\frac{1}{sx}, \frac{1}{sy}, \frac{1}{sz})$$

$$\mathbf{S}(sx, sy, sz)^{-1} = \mathbf{S}(\frac{1}{sx}, \frac{1}{sy}, \frac{1}{sz})$$
$$\mathbf{S}(sx, sy, sz)\mathbf{S}(\frac{1}{sx}, \frac{1}{sy}, \frac{1}{sz}) = \mathbf{I}$$

Switching Coordinate Systems

- Problem Formulation:
 - Given two orthonormal coordinate systems XYZ and UVW
 - Find transformation from *UVW* to *XYZ*
- Answer:
 - Transformation matrix R whose columns are *U,V,W* (in *XYZ* system):

$$R = \begin{bmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{bmatrix}$$

Transformations

Switching Coordinate Systems

Proof:

$$R(X) = \begin{bmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix} = U$$

• Similarly R(Y) = V & R(Z) = W

Switching Coordinate Systems

- Inverse (=transpose) transformation R⁻¹ provides mapping from UVW to XYZ
- E.g.

$$R^{-1}(U) = \begin{bmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{bmatrix} \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix} = \begin{pmatrix} u_x^2 + u_y^2 + u_z^2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = X$$

 Comment: Used for mapping between XY and arbitrary plane

Transformations

What each transformation preserves

	Straight lines	parallel lines	distance	angles	
uniform scaling					
non-uniform scaling					
rotation					
translation					
shear					

Assignment 1 Marking

- Slots of 7 min each student:
 - Use piazza linked doodle poll to select time blocks
 - Signup sheet in next class + labs
- Code must compile and run on lab machines
- Timestamp: DON'T touch any files after deadline
- Be there & be ready (arrive 10 min early)
- Showcase your code & answer questions
 - Explain what works, what doesn't, what extras you added, etc...