Computer Graphics

* Chapter 2
I

Basics of Computer Graphics:
Rendering Pipeline/OpenGL

Rendering Pipeline/
OpenGL

‘_:| Your tasks for the weekend

= Piazza Discussion Group:
= Register

= Post review questions by Mon noon
= Use private option, revl tag

= Start Assignment 1

= Test programming environment on lab
computers/Set laptop environment (optional)

:- Assignment 1

= Experience OpenGL & GLUT
= Have FUN

= Description:
http://www.ugrad.cs.ubc.ca/~cs314/Vsep2013/al/al.pdf

= Deadline: Sep 20

Your tasks for the weekend

= Sign and Submit Plagiarism Form
= http://www.ugrad.cs.ubc.ca/~cs314/Vsep2013/plag.html

= Optional reading (Shirley: Introduction to CG)

= Math refresher: Chapters 2, 4
= Lots of math coming in the next few weeks

= Background on graphics: Chapter 1

:- Rendering

Goal:
= Transform (3D) computer models into images
= Photo-realistic (or not)
Interactive rendering:
= Fast, but (until recently) low quality
= Roughly follows a fixed pattern of operations
> Rendering Pipeline
Offline rendering:
= Ray-tracing
= Global illumination

Copyright A. Sheffer, 2013, UBC

Rendering Tasks (no particular order)

= Project 3D geometry onto image plane
= Geometric transformations

= Determine which primitives/parts of primitives
are visible

= Hidden surface removal

= Determine which pixels geometric primitive
covers

= Scan conversion
= Compute color of every visible surface point
= Lighting, shading, texture mapping

Page 1

Computer Graphics

‘_-’ The Rendering Pipeline

Geometry Processing

| o e |
e e [|]

Rasterization Fragment Processing

Rendering Pipeline/
OpenGL

Rendering Pipeline

= Abstract model of

= sequence of operations to transform
geometric model into digital image

= graphics hardware workflow

= Underlying API (application programming
interface) model for programming graphics
hardware

= OpenGL
= Direct 3D

= Actual implementations vary

Clicker Question

= Which of the tasks below is not part of the
rendering pipeline?
. Scan Conversion
s. Viewing Transformation
c. Modeling
o. Lighting

._:’ (Tentative) Lecture Syllabus

Introduction + Rendering = Lighting Models (week 8)
Pipeline (week 1/2) = Texture mapping (week 9/10)

Transformations (week 2/3) . Review & Midterm (week 10)
Scan Conversion (week 4/5) = Midterm: Nov 8

Clipping (week 5) = Ray Tracing (week 11)
Hidden Surface Removal = Shadows (week 11/12)
(week 6/7) = Modeling (content creation)
Review & Midterm (week 7) (week 12/13)

= Midterm: Oct 18 = Review (last lecture)

Rendering Pipeline Implementation:
OpenGL/GLut

Copyright A. Sheffer, 2013, UBC

OpenGL

= API for graphics hardware
= Started in 1989 by Kurt Akeley
= Designed to exploit graphics hardware
= Implemented on many different platforms

= Pipeline processing
= Eventdriven
=« Communication via state setting

Page 2

Computer Graphics

Rendering Pipeline/
OpenGL

GLUT: OpenGL Utility Toolkit

= Event driven !l

int main(int argc, char **argv)

{
// Initialize GLUT and open a window.
glutlnit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
glutlnitWindowSize(800, 600);
glutCreateWindow(argv[0]);

// Register a bunch of callbacks for GLUT events.
glutDisplayFunc(display);
glutReshapeFunc(reshape);

// Pass control to GLUT.
glutMainLoop();

return O;

Event-Driven Programming

= Main loop not under your control
= Vs. procedural
= Control flow through event callbacks
= redraw the window now
= key was pressed
= mouse moved
= Callback functions called from main loop
when events occur
= mouse/keyboard, redrawing...

Graphics State (global variables)

= Set state once, remains until overwritten

= glColor3f(1.0, 1.0, 0.0) > set color to yellow
= glSetClearColor(0.0, 0.0, 0.2) - dark blue bg
= glEnable(LIGHTO) - turn on light

= glEnable(GL_DEPTH_TEST) - hidden surf.

OpenGL/GLUT Example

void display(void) {// Called when need to redraw screen.
// Clear the buffer we will draw into.
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);

// Initialize the modelview matrix.
glIMatrixMode (GL_MODELVIEW);
glLoadldentity();

// Draw STUFF

// Make the buffer we just drew into visible.
glutSwapBuffers();

GLUT Example

int main(int argc, char *argv[]) {

// Schedule the first animation callback ASAP.
glutTimerFunc(0, animate, 0);
// Pass control to GLUT.

glutMainLoop(Q);
return 0O;

3

void animate(int last_frame = 0) {
// Do stuff

// Schedule the next frame.

int current_time = glutGet(GLUT_ELAPSED_TIME);

int next_frame = last_frame + 1000 / 30;

glutTimerFunc(MAX(0, next_frame - current_time),
animate, current_time);

3

:-| GLUT Input Events

// you supply these kind of functions

void reshape(int w, int h);
void keyboard(unsigned char key, int x, int y);
void mouse(int but, int state, Int x, iInt y);

// register them with glut

glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMouseFunc(mouse) ;

Copyright A. Sheffer, 2013, UBC

Page 3

Computer Graphics

UBC

GLUT and GLU primitives

luSphere(.. .
quC)p/Iindgr(.?.)

glutSolidSphere(GLdouble radius, GLint slices, GLint stacks)
glutWireSphere(...)

glutSolidCube(GLdouble size)
glutWireCube(...)

glutSolidTorus(...)
glutWireTorus(...)

glutSolidTeapot(...)
glutWireTeapot(...)

= Note:
= Have limited set of parameters
= Control via global transformations (see al template)
= Need to save/restore setting

Rendering Pipeline/
OpenGL

GLUT and GLU primitives

= Example (from al):

void Turtle::draw() {
glPushMatrix(); = Save previous state
glTranslatef(x_, y_, 0);
// Turtle shell.
glColorafv(shell_);
glBegin(GL_POLYGON);
for (double i = 0; i < M_PI; i += M_P1 / 12)
glVertex3f(cos(i) * radius_, sin(i) * radius_, 0.0);
glEnd();

glPopMatrix(); > Restore previous state

GLUT and GLU primitives

= Basic Transformations:

// Different basic transformations
glTranslatef(.);

glRotatef(..);

glScalef(.);

Lighting

void setup_lighting(void) {

/1 Tum on lighting, and two local lights.
glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL_LIGHT1);
glEnable(GL_COLOR_MATERIAL);

/1 Set the intensity of the global ambient light.
float ambient[] = {0.3, 0.3, 0.3, 1.0};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient);

/1 Set up the diffuse intensities of the local light source.
float diffuse[][4] = {

058,08,08,1,

02,02,02,1,

b
glLightfy(GL_LIGHTO, GL_DIFFUSE, diffuse[0]):
glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse[1]);

/1 Move the light near the top corner of the window.
float light_positions[][4] = {
0, 1,2, 0, // From above-left
0,-5,0, 0, // From below

b
glLightfy(GL_LIGHTO, GL_POSITION, light_positions[0]):
glLightfy(GL_LIGHT1, GL_POSITION, light_positions[1]);

* Rendering Pipeline in (More) Detail
|

Copyright A. Sheffer, 2013, UBC

Clicker Question

= What does the function ‘glutMainLoop’ do?
» Nothing
s. Calls rendering pipeline
c. Creates 3D content
o. Computes scene lighting

Page 4

Computer Graphics

!-’ The Rendering Pipeline

Geometry Processing

Rendering Pipeline/
OpenGL

| o e |

’-- | --

Rasterization Fragment Processing

3D Content

= Needs to represent models for
= Shapes (objects)
= Relations between different shapes
= Object materials
= Light sources
= Camera

Shapes: Representation options

= Volumetric - Boolean algebra

with volumetric primitives B <8
= Spheres, cones, cylinders, /o 7N
tori, ... 9 ov
Q/\.r

= Boundary representation —
union of surface patches
= Single basic primitive -
Triangle Mesh :
= Higher order surface/curve
primitives

‘_-’ Shapes - Curves/Surfaces

= Mathematical representations:
= Explicit functions

= Parametric functions

= Implicit functions

!-’ Shapes: Explicit Functions

= Curves:
« yis a function of x: Y :=Sin(x)
= Only works in 2D

= Surfaces:
= zis a function of x and y: Z :=Sin(x) +cos(y)
= Cannot define arbitrary shapes in 3D

Copyright A. Sheffer, 2013, UBC

!-| Shapes: Parametric Functions

= Curves:
= 2D: x and y are functions of a parameter value t

= 3D: X, y, and z are functions of a parameter
value t

cos(t)
C(t) :=| sin(t)
t

Page 5

Computer Graphics

Shapes: Parametric Functions

= Surfaces:

= Surface S is defined as a function of
parameter values s, t

= Names of parameters can be different to
match intuition:

cos(¢) cos(6)
S(¢,0):=| sin(g)cos(6)
sin(6)

Rendering Pipeline/

OpenGL

Shapes: Implicit

= Surface (3D) or Curve (2D) defined by zero
set (roots) of function
= E.Q:

S(X,y,2): x> +y*+2z*-1=0

* Shapes: Triangle Meshes

= Triangle = 3 vertices

* Open GL: (More) Shape Primitives

glPointSize(float size);

- bl glLineWidth(float width);
Yo o glColor3f(floatr, float g, float b);
GL_POINTS
vl
“%ﬁ‘w\va
— = TRIANGLE...
GL_LINES
glColor3f(0,1,0);
- . glBegin(GL_TRIANGLES);
v v glVertex3f(0.0f, 0.5F, 0.0F);
‘.Bﬂva glVertex3f£ -0.5F, -0.5F, 0.0F);
ey glVertex3f(0.5f, -0.5F, 0.0f);
glENdQ;

OpenGL — Shape Primitives

= How to interpret geometry
= gIBegin(<mode of geometric primitives>)
= mode = GL_TRIANGLE, GL_POLYGON, etc.

= Feed vertices
= glVertex3f(-1.0, 0.0, -1.0)
= glVertex3f(1.0, 0.0, -1.0)
= glVertex3f(0.0, 1.0, -1.0)

] Done
= glEnd()

Copyright A. Sheffer, 2013, UBC

* The Rendering Pipeline

Geometry Processing

Rasterization Fragment Processing

—

Page 6

Computer Graphics

Modeling and Viewing Transformations

= Placing objects - Modeling transformations

= Map points from object coordinate system to
world coordinate system

= Placing camera - Viewing transformation

= Map points from world coordinate system
to camera (or eye) coordinate system

Rendering Pipeline/
OpenGL

Modeling Transformations:
i Object Placement

Viewing Transformation:
iwcemem

Modeling & Viewing Transformations

= Types of transformations:
= Rotations, scaling, shearing

¢ W Ba
= Translations D . @

= Other transformations (not handled by
rendering pipeline):

= Freeform deformation D . E::l

Copyright A. Sheffer, 2013, UBC

Modeling & Viewing Transformation

= Linear transformations
= Rotations, scaling, shearing
= Can be expressed as 3x3 matrix
= E.g. scaling (non uniform):

X' 2 0 0)(x
y'[=|0 3 0|y
7' 0 0 1)\z

Page 7

Computer Graphics

Rendering Pipeline/
OpenGL

Modeling & Viewing Transformation

= Affine transformations
= Linear transformations + translations
= Can be expressed as 3x3 matrix + 3 vector
= E.g. scale+ translation:

X' 2 0 0)(x t,
y'=[0 3 0]y|[+t,
z' 0 0 1)\z t

z

= Another representation: 4x4 homogeneous
matrix

* The Rendering Pipeline

Geometry Processing

e]
e =

Rasterization Fragment Processing

* Lighting

* The Rendering Pipeline

Geometry Processing

= e |
EEEE

Rasterization Fragment Processing

* Perspective Transformation

= Purpose:
= Project 3D geometry to 2D image plane
= Simulates a camera

= Camera model:
= Pinhole camera (single view point)

= More complex camera models exist, but are
less common in CG

Copyright A. Sheffer, 2013, UBC

Page 8

Computer Graphics

Rendering Pipeline/
OpenGL

:-’ Perspective Transformation

= In computer graphics:
= Image plane conceptually in front of center of

projection S %

= Perspective transformations — subset of
projective transformations

= Linear & affine transformations also belong to
this class

= All projective transformations can be
expressed as 4x4 matrix operations

Geometry Processing

Geometric Model/View P Perspective -
Content Transform. [~ 999~ qianstorm. [CliPPing _—‘
L Scan N . ||| Depth _ Frame-
Conversion T Test Blending |t puffer
Rasterization Fragment Processing

:-’ Clipping

= Removing invisible geometry
= Geometry outside viewing frustum
= Plus too far or too near one

:- The Rendering Pipeline

Geometry Processing

Geometric Model/View A Perspective -
Content Transform. || H9Nting | Transform. [] PPiNg '—‘
{ Scan . | || Depth . Frame-
| conversion [~°] TeXtuing Test —|Blending 1% puffer
Rasterization Fragment Processing

:-’ Scan Conversion/Rasterization

= Convert continuous 2D geometry to discrete
= Raster display — discrete grid of elements

Terminolo
[] ! gy) !’;J
= Pixel: basic element on device

drawing

= Resolution: number of rows & columns in
device
= Measured in

Absolute values (1K x 1K)
Density values (300 dots per inch)

= Screen Space: Discrete 2D Cartesian
coordinate system of the screen pixels

Copyright A. Sheffer, 2013, UBC

Page 9

Computer Graphics

!-’ Scan Conversion

Rendering Pipeline/
OpenGL

!-| Scan Conversion

!-’ Scan Conversion

= Problem:
= Line is infinitely thin, but image has finite
resolution
= Results in steps rather than a smooth line
= Jaggies
= Aliasing
= One of the fundamental problems in computer
graphics

Scan Conversion

= Color interpolation

= Linearly interpolate per-pixel color from vertex
color values

= Treat every channel of RGB color separately

color

/
//
7
//
!-’ Scan Conversion
n
VT TN
4
Se R
Scan Conversion
= Color interpolation
= Example:
red green blue
t t t
S S S

Copyright A. Sheffer, 2013, UBC

Page 10

10

Computer Graphics

!-’ The Rendering Pipeline

Geometry Processing

Rendering Pipeline/
OpenGL

| o e |

’-- | --

Rasterization Fragment Processing

!-| Texturing

(5219

!-’ Texturing

Copyright A. Sheffer, 2013, UBC

i Texturing

= Issues:
= Computing 3D/2D map (low distortion)

= How to map pixel from texture (texels) to
screen pixels

= Texture can appear widely distorted in
rendering

= Magnification / minification of textures
= Filtering of textures
= Preventing aliasing (anti-aliasing)

Page 11

Computer Graphics

; The Rendering Pipeline

Geometry Processing

Rendering Pipeline/
OpenGL

Rasterization Fragment Processing

Geometric Model/View S Perspective o
Content Transform. || H9Ntng Trangform. [y Clipping "‘
L Scan N . ||| Depth . Frame-
Conversion fEinng Test —) Blending % puffer

i Depth Test /Hidden Surface Removal

= Remove invisible geometry
= Parts that are hidden behind other geometry
= Possible Implementations:
= Pixel level decision
= Depth buffer
= Object space decision
= E.g. intersection order for ray tracing

Geometry Processing

Copyright A. Sheffer, 2013, UBC

Geometric Model/View L Perspective .
Content Transform. || H9hting ™ Transform. [] CiPPIng '—‘
|| Scan . ||| Depth . 1 Frame-
Conversion || 1&Xt1ing Test —| Blending buffer
Rasterization Fragment Processing
Page 12

12

Rendering Pipeline/
Computer Graphics OpenGL

Blending

= Blending:
= Final image: specify pixel color
= Draw from farthest to nearest
= No blending — replace previous color
= Blending: combine new & old values with

some arithmetic operations

= Frame Buffer : video memory on graphics
board that holds resulting image & used to
display it

Clicker Quiz

= Which type of function is used in this curve
description: (x) = (Sm a)?

y cos o
A Implicit
5. Explicit
c. Parametric
o. Quadratic

Copyright A. Sheffer, 2013, UBC
Page 13

