

Geometric Modeling - Basics

- Mathematical models of real world shapes - Most common: Boundary representations

Freeform smooth surface

- Alternative: Volumetric representations

Primitive based

Voxel based

Splines - Free Form Curves

- Geometric meaning of coefficients (base)
- Approximate/interpolate set of positions, derivatives, etc..

- Will see one example

Splines - Free Form Curves

- Usually parametric
- $C(t)=[x(t), y(t)]$ or $C(t)=[x(t), y(t), z(t)]$
- Description = basis functions + coefficients

$$
\begin{aligned}
& C(t)=\sum_{i=0}^{n} P_{i} B_{i}(t)=(x(t), y(t)) \\
& x(t)=\sum_{i=0}^{n} P_{i}^{x} B_{i}(t) \\
& y(t)=\sum_{i=0}^{n} P_{i}^{y} B_{i}(t)
\end{aligned}
$$

- Same basis functions for all coordinates

Hermite Cubic Basis

- Geometrically-oriented coefficients
- 2 positions +2 tangents
- Require $C(0)=P_{0}, C(1)=P_{1}, C^{\prime}(0)=T_{0}, C^{\prime}(1)=T_{1}$
- Define basis function per requirement

$$
C(t)=P_{0} h_{00}(t)+P_{1} h_{01}(t)+T_{0} h_{10}(t)+T_{1} h_{11}(t)
$$

Hermite Basis Functions

$$
C(t)=P_{0} h_{00}(t)+P_{1} h_{01}(t)+T_{0} h_{10}(t)+T_{1} h_{11}(t)
$$

- To enforce $C(0)=P_{0}, C(1)=P_{1}, C^{\prime}(0)=T_{0}, C^{\prime}(1)=T_{1}$ basis should satisfy

$$
h_{i j}(t): i, j=0,1, t \in[0,1]
$$

curve	$C(0)$	$C(1)$	$C^{\prime}(0)$	$C^{\prime}(1)$
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

Hermite Cubic Basis

- Can satisfy with cubic polynomials as basis

$$
h_{i j}(t)=a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}
$$

- Obtain - solve 4 linear equations in 4 unknowns for each basis function

$$
h_{i j}(t): i, j=0,1, t \in[0,1]
$$

curve	$C(0)$	$C(1)$	$C^{\prime}(0)$	$C^{\prime}(1)$
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

Hermite Cubic Basis

- Four polynomials that satisfy the conditions

$$
\begin{aligned}
& h_{00}(t)=t^{2}(2 t-3)+1 \quad h_{01}(t)=-t^{2}(2 t-3) \\
& h_{10}(t)=t(t-1)^{2} \quad h_{11}(t)=t^{2}(t-1)
\end{aligned}
$$

- Curve is expressed as inner product of P_{i}
coefficients and basis functions

$$
C(u)=\sum_{i=0}^{n} P_{i} B_{i}(u)
$$

- To extend curves to surfaces - treat surface as a curve of curves
- Assume P_{i} is not constant, but a function of second parameter v: $P_{i}(v)=\sum_{j=0}^{m} Q_{i j} B_{j}(v)$

$$
C(u, v)=\sum_{i=0}^{n} \sum_{i=0}^{m} Q_{i j} B_{j}(v) B_{i}(u)
$$

Bilinear Patches

- Bilinear interpolation of 4 3D points

$$
P_{00}, P_{01}, P_{10}, P_{11}
$$

- surface analog of line segment curve

Bilinear Patches

- Given $P_{00}, P_{01}, P_{10}, P_{11}$ associated parametric bilinear surface for $u, v \in[0,1]$ is:

$$
P(u, v)=(1-u)(1-v) P_{00}+(1-u) v P_{01}+u(1-v) P_{10}+u v P_{11}
$$

- Questions:
- What does an isoparametric curve of a bilinear patch look like ?
- When is a bilinear patch planar?

Geometry Creation (Meshes)

- Reconstruction: Capture real life shapes \& convert to mesh
- Inputs:
- Points (laser scanner)
- 3D images
- Modeling (user driven)
- Will see two examples

- Marching Cubes - reconstruction from images
- Subdivision - generating smooth meshes from coarse user-given "cages"

Reconstruction from Volume Data

- Volume data - view as voxel grid with values at vertices
- Defines implicit function in 3D - interpolate grid values
- Shape defined by isosurface
- isosurface = set of points with constant isovalue α
- separates values above α from values below
- Reconstruction - Extract triangulation approximating isosurface

Computer Graphics

Voxels

- Voxel - cube with values at eight corners
- Each value is above or below isovalue α
- $2^{8}=256$ possible configurations (per voxel)
- reduced to 15 (symmetry and rotations)
- Each voxel is either:
- Entirely inside isosurface
- Entirely outside isosurface
- Intersected by isosurface

- MC main observation: Can extract triangulation independently per voxel

Basic MC Algorithm

- For each voxel produce set of triangles
- Based on above/below corner configuration
- Empty for non-intersecting voxels
- Approximate surface inside voxel

Copyright: Alla Sheffer, UBC 2011

Configurations

- For each configuration add 1-4 triangles to isosurface
- Isosurface vertices computed by:
- Interpolation along edges (according to grid values)
- better shading, smoother surfaces
- Default - mid-edges

Computer Graphics

Geometric Modeling

Consistency Problem

- Can produce non-manifold - Isovalue surfaces with "holes"
- Example:

- Voxel with configuration 6 sharing face with complement of configuration 3

Computer Graphics

Geometric Modeling

Ambiguous Faces

- Face containing two diagonally opposite marked grid points and two unmarked ones

- Two locally valid interpretations

- Source of MC consistency problem

Consistency

- Problem:
- Connection of isosurface points on shared face done one way on one face \& another way on the other
- Need consistency \rightarrow use different triangulations
- If choices are consistent get topologically correct surface

Solution

- For each problematic configuration have more than one triangulation

- Distinguish different cases by choosing pairwise connections of four vertices on common face
- Example:

Asymptotic Decider

- "Guess" value at quad center
- Use bilinear interpolation to obtain

Ambiguous Faces

- If center value closer to "green" choose

. Else

Various Cases

- Some configurations have no ambiguous faces \rightarrow no modifications
- Other configurations need modifications according to number of ambiguous faces
- Apply decoder to each face to decide on triangulation template

