* Chapter 12
|

Texture Mapping

* Rendering Pipeline

Geometry Processing

’-_ --- >--

Rasterization Fragment Processing

Copyright: Alla Sheffer, UBC, 2013

i Texture Mapping

= Real life objects non oSS
uniform in terms of
color & normal

= To generate realistic
objects - reproduce
coloring & normal
variations = Texture

= Can often replace
complex geometric
details

i Texture Mapping

= Introduced to increase realism
= Lighting/shading models not enough
= Hide geometric simplicity
= Images convey illusion of geometry
= Map a brick wall texture on a flat polygon
= Create bumpy effect on surface
= Associate 2D information with 3D surface

= Point on surface corresponds to a point in
texture

= “Paint” image onto polygon

Copyright: Alla Sheffer, UBC, 2013

: UBC
* Color Texture Mapping i
= Define color (RGB) for each point on object
surface

= Two approaches
= Surface texture map
= Volumetric texture

D)
i

.iC
e 1=
- n

Surface texture

= Define texture pattern over (u,v) domain (Image)
= Image — 2D array of “texels”
= Assign (u,v) coordinates to each point on object surface
= How: depends on surface type
= For polygons (triangle)
= Inside — use barycentric coordinates
= For vertices need mapping function (artist/programmer)

\

Copyright: Alla Sheffer, UBC, 2013

Texture Mapping

glTexCoord2f(s,t)
glVertexf(x,y,z,w)

S

I--_—___-_-- (u, v) parameterization in
OpenGL

Texture Mapping Example

=

Copyright: Alla Sheffer, UBC, 2013

i Texture Coordinates

= Every triangle has object coordinates and
texture coordinates

= Object coordinates describe where triangle
vertices are on the screen

= texture coordinates describe texel coordinates
of each vertex

= texture coordinates are interpolated across
triangle (like R,G,B,2)
= (well, not quite...)
= glTexCoord2f(TYPE coords)

= Other versions for different texture dimensions

i Example Texture Map

; H
Ls glTexCoord2d(1,1); le
gl\Vertex3d (-x, v, 2);
(1, 1)
H + - /7;/ %\
(1, 0)
/ /
glTexCoord2d(0,0);

gl\Vertex3d (-x, -y, -2);
Texture Object Mapped Texture

Copyright: Alla Sheffer, UBC, 2013

i Fractional Texture Coordinates

texture |
image

0,1) (1,1) (0,.5) (.25,.5)

(0,0) (1,0) (0,0 (.25,0)

i Texture Lookup: Tiling and Clampi

= What if s or t is outside the interval [0...1]?

= Multiple choices
= Use fractional part of texture coordinates

= Cyclic repetition of texture to tile whole surface
glTexParameteri(..., GL_TEXTURE_WRAP_S, GL_REPEAT,
GL_TEXTURE_WRAP_T, GL_REPEAT, ...)

= Clamp every component to range [0...1]

= Re-use color values from texture image border
glTexParameteri(..., GL_TEXTURE_WRAP_S, GL_CLAMP,
GL_TEXTURE_WRAP_T, GL_CLAMP, ...)

Copyright: Alla Sheffer, UBC, 2013

+

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

Texdure

glTexCoord2d(4, 4);
glVertex3d (x, Y, z);

Tiled Texture Map

ﬂ\m
=+ =

f Emms
BT e

\ EEeEeme
Texture

(=
&
@)

1);
o
al’
L/
3
1

j Mapped Texturs

0.1

(0,0) / Chiect (0,4) Mapped Texture

i OpenGL Detalils

= How to mix texture & color (replace, blend,

etc...)

texture on an object

Transformations: Change scale, orientation of

Storage: data structure + read format
= Rule: size always power of 2

Binding: which image to use

Copyright: Alla Sheffer, UBC, 2013

* Texture Mapping

sTexture coordinate interpolation
= Perspective foreshortening problem
= Also problematic for color interpolation, etc.

i Interpolation: Screen vs. World Space

= Screen space (perspective) interpolation incorrect

= Problem ignored with shading, but artifacts more
visible with texturing

Po(x.y.2)

Vo(xy")

P1(x.y.2)

Copyright: Alla Sheffer, UBC, 2013

i Perspective - Reminder

X 1 0 0 0Ofx
T y 01 0 0|y ; _azeye+b_aJr b
= NDC B
1 0 0 -1 0|1

= Preserves order
= BUT distorts distances

i Texture Coordinate Interpolation

= Perspective Correct Interpolation

= o, 3, y: Barycentric coordinates (2D) of point P
= Sy, S5, S, : texture coordinates of vertices

= W, W;,W, : homogenous coordinate of vertices

(s1,t1)
(x1,y1,z1,wl) S:a'SO/W0+IB’51/W1+7'52/W2

alwy,+pIw +ylw,

(s2,t2)
(x2,y2,z2,w2) (s0,t0)
(x0,y0,z0,w0)

= Similarly for t

Copyright: Alla Sheffer, UBC, 2013

10

iTexture: Sampling & Reconstruction=

Rotx Roty | IITTT il rom|

i Reconstruction

= How to deal with:
= pixels that are much larger than texels ?

(apply filtering, “averaging™)

= pixels that are much smaller than texels ?

(interpolate)

Copyright: Alla Sheffer, UBC, 2013

11

i\/\agnification:Interpolating TexturesSi

= Nearest neighbor
= Bilinear
= Hermite (cubic)

1 0 i
0 1 0
1 0 1

Copyright: Alla Sheffer, UBC, 2013

12

))

: UBC
i MIP-mapping L

Use “image pyramid” to precompute
averaged versions of the texture

Without MIP-mapping

With MIP-mapping

. UBC
i MIP-mapping iz

without with

Copyright: Alla Sheffer, UBC, 2013

13

i MIPmap storage

= Only 1/3 more space required

i Texture Parameters

= In addition to color can control other
material/object properties

Reflectance (either diffuse or specular)

Surface normal (bump mapping)

Transparency

Reflected color (environment mapping)

Copyright: Alla Sheffer, UBC, 2013

14

= Object surface often not
smooth — to recreate
correctly need complex
geometry model

= Can control shape “effect”
by locally perturbing surface
normal

= Random
= Directional

& Bump Mapping

S

O(u)

Original surface

Biu)

A bump map

Copyright: Alla Sheffer, UBC, 2013

15

0 (u)

Lengthening or shortening
O(u) using B(u)

N'(u)

The vectors to the
‘new’ surface

i Displacement Mapping

= Bump mapping gets silhouettes
wrong

= Shadows wrong too

= Change surface geometry instead
= Need to subdivide surface

= GPU support

= Bump and displacement mapping not
directly supported: require per-pixel
lighting

= Modern GPUs allow for
programming both yourself

NS4 BUR
B FanClub
I_Ihin

Copyright: Alla Sheffer, UBC, 2013

16

* Environment Mapping

= cheap way to achieve reflective effect
= generate image of surrounding
= map to object as texture

=

i Environment Mapping

= used to model object that reflects
surrounding textures to the eye

= movie example: cyborg in Terminator 2
= different approaches

= sphere, cube most popular

= OpenGL support
GL_SPHERE_MAP, GL_CUBE_MAP

= others possible too

Copyright: Alla Sheffer, UBC, 2013

17

i Cube Mapping

= 6 planar textures, sides of cube

= point camera in 6 different directions, facing
out from origin

Copyright: Alla Sheffer, UBC, 2013

18

i Sphere Mapping

= texture is distorted fish-eye view
= point camera at mirrored sphere

= spherical texture mapping creates texture coordinates
that correctly index into this texture map

UBC

—
Ny

)
<
]

i Volumetric Texture

= Define texture pattern over
3D domain - 3D space
containing the object o
= Texture function can be SRR
digitized or procedural
= For each point on object
compute texture from point
location in space
= Common for natural
material/irregular textures
(stone, wood,etc...)

mapping

Copyright: Alla Sheffer, UBC, 2013

