
Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 1

Chapter 11

Ray-Tracing

Midterm 2

Average XXX%

In 2012 average was 74%

 Basic shading (rendering pipeline) = local
illumination model
 No object interaction

 Global illumination models require more
sophisticated, computation-intensive algorithms
 Ray Tracing
 Global Illumination/Radiosity

 Ray-tracing
 Usually offline (e.g. movies etc.)

 research on making real-time
 Flexible – can incorporate lots of phenomena

Global Illumination Models

Ray-Tracing Algorithm

Image PlaneEye

Refracted
Ray

Reflected
Ray

rayshow

Light
Source

Shadow
Rays

 Mirror effects
 Perfect specular reflection

Reflection
n

 

 Interface between
transparent object and
surrounding medium
 E.g. glass/air boundary

 Light ray breaks (changes
direction) based on
refractive indices c1, c2

Refraction

n

 1

 2

Snell’s Law

2112 sinsin  cc 

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 2

Basic Ray-Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin

if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,obj));

else
reflect_color := Black;

if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,obj));

else
refract_color := Black;

return Shade(reflect_color,refract_color,obj);
end;

 Algorithm above has a BUG….

 Does not terminate

 Termination Criteria
 No intersection
 Contribution of secondary ray attenuated

below threshold – each reflection/refraction
attenuates ray

 Maximal depth is reached

More About Ray-Tracing

 ReflectRay(r,obj) – computes reflected ray
(use obj normal at intersection)

 RefractRay(r,obj) - computes refracted ray
 Note: ray is inside obj

 Shade(reflect_color,refract_color,obj) –
compute illumination given three components

Sub-Routines

 Trace ray from each ray-object intersection
point to light sources
 If the ray intersects an object in between 

point is shadowed from the light source

Simulating Shadows

shadow = RayTrace(LightRay(obj,r,light));

return Shade(shadow,reflect_color,refract_color,obj);

Ray-Tracing With Shadows

Image Plane
Light
SourceEye

Refracted
Ray

Reflected
Ray

rayshow

Ray images

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

Geometry Processing

Rasterization Fragment Processing

Replaces Rendering Pipeline!!!

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 3

 Generation of rays
 Intersection of rays with geometric primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space
partitioning

Ray-Tracing: Practicalities

 Camera Coordinate System
 Origin: C (camera position)
 Viewing direction: w
 Up vector: v
 u direction: u= wv

 Note:
 Corresponds to viewing

transformation in rendering pipeline!
 See gluLookAt…

Ray-Tracing: Generation of Rays

v

w

x
C

 Other parameters:
 Distance to image plane: d
 Image resolution (in pixels): x, h

 Left, right, top, bottom boundaries
in image plane: l, r, t, b

 Then:
 Lower left corner of image:
 Pixel at position i, j (i=0..x-1, j=0..h-1):

Ray-Tracing: Generation of Rays

vbulwdCO 

vu

v
1

u
1,













vjuiO
h

bt
j

x

lr
iOP ji

v

w

u
C

 Ray in 3D Space:

where t= 0…

Ray-Tracing: Generation of Rays

jijiji tCCPtCt ,,,)()(R v

 Generation of rays
 Intersection of rays with geometric

primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space
partitioning

Ray-Tracing: Practicalities

 Kernel of ray-tracing  must be extremely
efficient

 Usually involves solving a set of equations
 Using implicit formulas for primitives

Ray-Object Intersections

Example: Ray-Sphere intersection

ray:
(unit) sphere:
quadratic equation in t :

x t p v t y t p v t z t p v tx x y y z z() , () , ()     

p

v
x y z2 2 2 1  

0 1

2

1

2 2 2

2 2 2 2

2 2 2

      

     

   

() () ()

() ()

()

p v t p v t p v t

t v v v t p v p v p v

p p p

x x y y z z

x y z x x y y z z

x y z

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 4

 Other Primitives:
 Implicit functions:

 Spheres at arbitrary positions
 Same thing

 Conic sections (hyperboloids, ellipsoids,
paraboloids, cones, cylinders)
 Same thing (all are quadratic functions!)

 Higher order functions (e.g. tori and other
quartic functions)
 In principle the same
 But root-finding difficult
 Net to resolve to numerical methods

Ray Intersections

 Other Primitives (cont)
 Polygons:

 First intersect ray with plane
 linear implicit function

 Then test whether point is inside or outside of
polygon (2D test)

 For convex polygons
 Suffices to test whether point in on the right side of

every boundary edge
 Similar to computation of outcodes in line clipping

Ray Intersections

 Generation of rays
 Intersection of rays with geometric primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space
partitioning

Ray-Tracing: Practicalities

 Note: rays replace perspective transformation
 Geometric Transformations:

 Similar goal as in rendering pipeline:
 Modeling scenes convenient using different

coordinate systems for individual objects
 Problem:

 Not all object representations are easy to
transform
 This problem is fixed in rendering pipeline by

restriction to polygons (affine invariance!)

Ray-Tracing: Transformations

 Ray Transformation:
 For intersection test, it is only important that ray

is in same coordinate system as object
representation

 Transform all rays into object coordinates
 Transform camera point and ray direction by

inverse of model/view matrix
 Shading has to be done in world coordinates

(where light sources are given)
 Transform object space intersection point to world

coordinates
 Thus have to keep both world and object-space ray

Ray-Tracing: Transformations

 Generation of rays
 Intersection of rays with geometric primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space
partitioning

Ray-Tracing: Practicalities

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 5

 Light sources:
 For the moment: point and directional lights
 More complex lights are possible

 Area lights
 Global illumination

 Other objects in the scene reflect light
 Everything is a light source!
 Talk about this on Monday

Ray-Tracing: Local Lighting

 Local surface information (normal…)
 For implicit surfaces F(x,y,z)=0: normal n(x,y,z)

can be easily computed at every intersection
point using the gradient

 Example:

Ray-Tracing: Local Lighting






















zzyxF

yzyxF

xzyxF

zyx

/),,(

/),,(

/),,(

),,(n

2222),,(rzyxzyxF 


















z

y

x

zyx

2

2

2

),,(n
Needs to be normalized!

 Local surface information
 Alternatively: can interpolate per-vertex

information for triangles/meshes as in
rendering pipeline
 Phong shading!
 Same as discussed for rendering pipeline

 Difference to rendering pipeline:
 Have to compute Barycentric coordinates for

every intersection point (e.g plane equation for
triangles)

Ray-Tracing: Local Lighting

 Generation of rays
 Intersection of rays with geometric primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection

tests

Ray-Tracing: Practicalities

 Basic algorithm simple but VERY expensive
 Optimize…

 Reduce number of rays traced
 Reduce number of ray-object intersection

calculations
 Methods

 Bounding Boxes
 Spatial Subdivision

 Visibility & Intersection
 Tree Pruning

Optimized Ray-Tracing

raytracer

 Data Structures
 Goal: reduce number of intersection tests per

ray
 Lots of different approaches:

 (Hierarchical) bounding volumes
 Hierarchical space subdivision

 Octree, k-D tree, BSP tree

Ray Tracing

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 6

 Idea:
 Rather than test every ray against a potentially

very complex object (e.g. triangle mesh), do a
quick conservative test first which eliminates most
rays
 Surround complex object by simple, easy to test

geometry (typically sphere or axis-aligned box)
 Reduce false positives: make bounding volume as tight as

possible!

Bounding Volumes

 Extension of previous idea:
 Use bounding volumes for groups of objects

Hierarchical Bounding Volumes

 For any plane (3D) objects on the same side of
plane as viewer CANNOT be occluded by objects
on other side => intersect closer side first/if
don’t intersect plane can’t intersect other side

 Idea:
 Recursively split space

by planes
 Traverse resulting

tree to establish
rendering/intersection order
 Test eye location

w.r.t. each plane

BSP Trees: Idea

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 7

Creating BSP Trees: Objects

Creating BSP Trees: Objects

 No bunnies were harmed in previous example
 But what if a splitting plane passes through

an object?
 Split the object; give half to each node

Splitting Objects

 Tree creation independent of viewpoint
 Preprocessing step

 Tree traversal uses viewpoint
 Runtime, happens for many different

viewpoints

Traversing BSP Trees

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

F N

F

N

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 8

BSP Trees : Viewpoint A

F NF
N

FN

 decide independently at
each tree vertex

 not just left or right child!

BSP Trees : Viewpoint A

F N

F

N

NF

FN

BSP Trees : Viewpoint A

F N

F

N

NF

FN

BSP Trees : Viewpoint A

F N

FN
F

N

NF

1

1

BSP Trees : Viewpoint A

F N
F

N

FN

FN NF

1

2

1 2

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

1 2

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 9

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

1 2

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

3

1 2

3

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4

F
N

1 2

34

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

F
N

1 2

34

5

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

1 2

34

5

6

78

96

7
8

9

FN

FN

FN

 Each plane divides world into near and far
 For given viewpoint, decide which side is near

and which is far
 Check which side of plane viewpoint is on

independently for each tree vertex
 Tree traversal differs depending on viewpoint!

 Recursive algorithm
 Recurse on far side
 Draw object
 Recurse on near side

Traversing BSP Trees

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 10

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;
renderBSP(far);
if (T is a leaf node)

renderObject(T)
renderBSP(near);

Traversing BSP Trees

BSP Trees : Viewpoint B

N F

F

N
F

N

FN

F N

FNF N

N F

BSP Trees : Viewpoint B

N F

F

N
F

N

FN

1

34

2

F N

FNF N

N F5

6

7

891

2

3

4

5

6

7

9

8

 Split along the plane defined by any polygon
from scene

 Classify all polygons into positive or negative
half-space of the plane
 If a polygon intersects plane, split polygon

into two and classify them both
 Recurse down the negative half-space
 Recurse down the positive half-space

BSP Tree Traversal: Polygons

 Useful demo:
 http://symbolcraft.com/graphics/bsp

BSP Demo

 Pros:
 Simple, elegant scheme
 Correct version of painter’s algorithm back-to-front

rendering approach
 Still very popular for video games

 Cons:
 Slow(ish) to construct tree: O(n log n) to split, sort
 Splitting increases polygon count: O(n2) worst-case
 Computationally intense preprocessing stage

restricts algorithm to static scenes

Summary: BSP Trees

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 11

 Bounding Volumes:
 Find simple object completely enclosing

complicated objects
 Boxes, spheres

 Hierarchically combine into larger bounding
volumes

 Spatial subdivision data structure:
 Partition the whole space into cells

 Grids, octrees, (BSP trees)
 Simplifies and accelerates traversal
 Performance less dependent on order in which

objects are inserted

Spatial Subdivision Data Structures

 So far:
 All lights were either point-shaped or directional

 Both for ray-tracing and the rendering pipeline
 Thus, at every point, we only need to compute

lighting formula and shadowing for ONE
direction per light

 In reality:
 All lights have a finite area
 Instead of just dealing with one direction, we

now have to integrate over all directions that go
to the light source

Soft Shadows: Area Light Sources

 Area lights produce soft shadows:
 In 2D:

Area Light Sources

Area light

Occluding surface

Receiving surface

Umbra
(core shadow)

Penumbra
(partial shadow)

 Point lights:
 Only one light direction:

 V is visibility of light (0
or 1)

  is lighting
model (e.g.
diffuse or Phong)

Area Light Sources

Ireflected   V  Ilight

Point light

 Area Lights:
 Infinitely many light rays
 Need to integrate

over all of them:

 Lighting model
visibility and
light intensity
can now be different
for every ray!

Are Light Sources

Ireflected  () V ()  Ilight ()  d
light
directions



Area light

 Rewrite the integration
 Instead of integrating over directions

integrate over points on the light source

 q point on reflecting surface
 p= F(s,t) point on the area light
 We are integrating over p

Integrating over Light Source

 
ts

lightreflected dtdspIqpVqpqI
,

)()()()(

Ireflected  () V ()  Ilight ()  d
light
directions



Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 12

 Problem:
 Except for basic case not solvable analytically!

 Largely due to the visibility term

 So:
 Use numerical integration = approximate light

with lots of point lights

Integration

 Regular grid of point lights
 Problem: Too regular

see 4 hard shadows

 Need LOTS of points
to avoid this problem

Numerical Integration

Area light

 Better:
 Randomly choose

the points
 Use different points on

light for computing the
lighting in different points
on reflecting surface

 Produces
random noise
 Visually preferable to

structured artifacts !!!

Monte Carlo Integration

Area light

Monte Carlo Integration

one shadow ray

lots of shadow rays

 Note:
 This approach of approximating lighting

integrals with sums over randomly chosen
points is much more flexible than this!

 In particular, it can be used for global
illumination
 Light bouncing off multiple surfaces before

hitting the eye

Monte Carlo Integration

