
Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 1

Chapter 11

Ray-Tracing

Midterm 2

Average XXX%

In 2012 average was 74%

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 2

 Basic shading (rendering pipeline) = local
illumination model
 No object interaction

 Global illumination models require more
sophisticated, computation-intensive algorithms
 Ray Tracing
 Global Illumination/Radiosity

 Ray-tracing
 Usually offline (e.g. movies etc.)

 research on making real-time
 Flexible – can incorporate lots of phenomena

Global Illumination Models

Ray-Tracing Algorithm

Image PlaneEye

Refracted
Ray

Reflected
Ray

rayshow

Light
Source

Shadow
Rays

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 3

 Mirror effects
 Perfect specular reflection

Reflection
n

 

 Interface between
transparent object and
surrounding medium
 E.g. glass/air boundary

 Light ray breaks (changes
direction) based on
refractive indices c1, c2

Refraction

n

 1

 2

Snell’s Law

2112 sinsin  cc 

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 4

Basic Ray-Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin

if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,obj));

else
reflect_color := Black;

if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,obj));

else
refract_color := Black;

return Shade(reflect_color,refract_color,obj);
end;

 Algorithm above has a BUG….

 Does not terminate

 Termination Criteria
 No intersection
 Contribution of secondary ray attenuated

below threshold – each reflection/refraction
attenuates ray

 Maximal depth is reached

More About Ray-Tracing

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 5

 ReflectRay(r,obj) – computes reflected ray
(use obj normal at intersection)

 RefractRay(r,obj) - computes refracted ray
 Note: ray is inside obj

 Shade(reflect_color,refract_color,obj) –
compute illumination given three components

Sub-Routines

 Trace ray from each ray-object intersection
point to light sources
 If the ray intersects an object in between 

point is shadowed from the light source

Simulating Shadows

shadow = RayTrace(LightRay(obj,r,light));

return Shade(shadow,reflect_color,refract_color,obj);

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 6

Ray-Tracing With Shadows

Image Plane
Light
SourceEye

Refracted
Ray

Reflected
Ray

rayshow

Ray images

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

Geometry Processing

Rasterization Fragment Processing

Replaces Rendering Pipeline!!!

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 7

 Generation of rays
 Intersection of rays with geometric primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space
partitioning

Ray-Tracing: Practicalities

 Camera Coordinate System
 Origin: C (camera position)
 Viewing direction: w
 Up vector: v
 u direction: u= wv

 Note:
 Corresponds to viewing

transformation in rendering pipeline!
 See gluLookAt…

Ray-Tracing: Generation of Rays

v

w

x
C

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 8

 Other parameters:
 Distance to image plane: d
 Image resolution (in pixels): x, h

 Left, right, top, bottom boundaries
in image plane: l, r, t, b

 Then:
 Lower left corner of image:
 Pixel at position i, j (i=0..x-1, j=0..h-1):

Ray-Tracing: Generation of Rays

vbulwdCO 

vu

v
1

u
1,













vjuiO
h

bt
j

x

lr
iOP ji

v

w

u
C

 Ray in 3D Space:

where t= 0…

Ray-Tracing: Generation of Rays

jijiji tCCPtCt ,,,)()(R v

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 9

 Generation of rays
 Intersection of rays with geometric

primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space
partitioning

Ray-Tracing: Practicalities

 Kernel of ray-tracing  must be extremely
efficient

 Usually involves solving a set of equations
 Using implicit formulas for primitives

Ray-Object Intersections

Example: Ray-Sphere intersection

ray:
(unit) sphere:
quadratic equation in t :

x t p v t y t p v t z t p v tx x y y z z() , () , ()     

p

v
x y z2 2 2 1  

0 1

2

1

2 2 2

2 2 2 2

2 2 2

      

     

   

() () ()

() ()

()

p v t p v t p v t

t v v v t p v p v p v

p p p

x x y y z z

x y z x x y y z z

x y z

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 10

 Other Primitives:
 Implicit functions:

 Spheres at arbitrary positions
 Same thing

 Conic sections (hyperboloids, ellipsoids,
paraboloids, cones, cylinders)
 Same thing (all are quadratic functions!)

 Higher order functions (e.g. tori and other
quartic functions)
 In principle the same
 But root-finding difficult
 Net to resolve to numerical methods

Ray Intersections

 Other Primitives (cont)
 Polygons:

 First intersect ray with plane
 linear implicit function

 Then test whether point is inside or outside of
polygon (2D test)

 For convex polygons
 Suffices to test whether point in on the right side of

every boundary edge
 Similar to computation of outcodes in line clipping

Ray Intersections

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 11

 Generation of rays
 Intersection of rays with geometric primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space
partitioning

Ray-Tracing: Practicalities

 Note: rays replace perspective transformation
 Geometric Transformations:

 Similar goal as in rendering pipeline:
 Modeling scenes convenient using different

coordinate systems for individual objects
 Problem:

 Not all object representations are easy to
transform
 This problem is fixed in rendering pipeline by

restriction to polygons (affine invariance!)

Ray-Tracing: Transformations

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 12

 Ray Transformation:
 For intersection test, it is only important that ray

is in same coordinate system as object
representation

 Transform all rays into object coordinates
 Transform camera point and ray direction by

inverse of model/view matrix
 Shading has to be done in world coordinates

(where light sources are given)
 Transform object space intersection point to world

coordinates
 Thus have to keep both world and object-space ray

Ray-Tracing: Transformations

 Generation of rays
 Intersection of rays with geometric primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space
partitioning

Ray-Tracing: Practicalities

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 13

 Light sources:
 For the moment: point and directional lights
 More complex lights are possible

 Area lights
 Global illumination

 Other objects in the scene reflect light
 Everything is a light source!
 Talk about this on Monday

Ray-Tracing: Local Lighting

 Local surface information (normal…)
 For implicit surfaces F(x,y,z)=0: normal n(x,y,z)

can be easily computed at every intersection
point using the gradient

 Example:

Ray-Tracing: Local Lighting






















zzyxF

yzyxF

xzyxF

zyx

/),,(

/),,(

/),,(

),,(n

2222),,(rzyxzyxF 


















z

y

x

zyx

2

2

2

),,(n
Needs to be normalized!

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 14

 Local surface information
 Alternatively: can interpolate per-vertex

information for triangles/meshes as in
rendering pipeline
 Phong shading!
 Same as discussed for rendering pipeline

 Difference to rendering pipeline:
 Have to compute Barycentric coordinates for

every intersection point (e.g plane equation for
triangles)

Ray-Tracing: Local Lighting

 Generation of rays
 Intersection of rays with geometric primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection

tests

Ray-Tracing: Practicalities

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 15

 Basic algorithm simple but VERY expensive
 Optimize…

 Reduce number of rays traced
 Reduce number of ray-object intersection

calculations
 Methods

 Bounding Boxes
 Spatial Subdivision

 Visibility & Intersection
 Tree Pruning

Optimized Ray-Tracing

raytracer

 Data Structures
 Goal: reduce number of intersection tests per

ray
 Lots of different approaches:

 (Hierarchical) bounding volumes
 Hierarchical space subdivision

 Octree, k-D tree, BSP tree

Ray Tracing

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 16

 Idea:
 Rather than test every ray against a potentially

very complex object (e.g. triangle mesh), do a
quick conservative test first which eliminates most
rays
 Surround complex object by simple, easy to test

geometry (typically sphere or axis-aligned box)
 Reduce false positives: make bounding volume as tight as

possible!

Bounding Volumes

 Extension of previous idea:
 Use bounding volumes for groups of objects

Hierarchical Bounding Volumes

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 17

 For any plane (3D) objects on the same side of
plane as viewer CANNOT be occluded by objects
on other side => intersect closer side first/if
don’t intersect plane can’t intersect other side

 Idea:
 Recursively split space

by planes
 Traverse resulting

tree to establish
rendering/intersection order
 Test eye location

w.r.t. each plane

BSP Trees: Idea

Creating BSP Trees: Objects

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 18

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 19

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 20

 No bunnies were harmed in previous example
 But what if a splitting plane passes through

an object?
 Split the object; give half to each node

Splitting Objects

 Tree creation independent of viewpoint
 Preprocessing step

 Tree traversal uses viewpoint
 Runtime, happens for many different

viewpoints

Traversing BSP Trees

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 21

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

F N

F

N

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 22

BSP Trees : Viewpoint A

F NF
N

FN

 decide independently at
each tree vertex

 not just left or right child!

BSP Trees : Viewpoint A

F N

F

N

NF

FN

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 23

BSP Trees : Viewpoint A

F N

F

N

NF

FN

BSP Trees : Viewpoint A

F N

FN
F

N

NF

1

1

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 24

BSP Trees : Viewpoint A

F N
F

N

FN

FN NF

1

2

1 2

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

1 2

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 25

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

1 2

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

3

1 2

3

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 26

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4

F
N

1 2

34

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

F
N

1 2

34

5

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 27

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

1 2

34

5

6

78

96

7
8

9

FN

FN

FN

 Each plane divides world into near and far
 For given viewpoint, decide which side is near

and which is far
 Check which side of plane viewpoint is on

independently for each tree vertex
 Tree traversal differs depending on viewpoint!

 Recursive algorithm
 Recurse on far side
 Draw object
 Recurse on near side

Traversing BSP Trees

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 28

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;
renderBSP(far);
if (T is a leaf node)

renderObject(T)
renderBSP(near);

Traversing BSP Trees

BSP Trees : Viewpoint B

N F

F

N
F

N

FN

F N

FNF N

N F

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 29

BSP Trees : Viewpoint B

N F

F

N
F

N

FN

1

34

2

F N

FNF N

N F5

6

7

891

2

3

4

5

6

7

9

8

 Split along the plane defined by any polygon
from scene

 Classify all polygons into positive or negative
half-space of the plane
 If a polygon intersects plane, split polygon

into two and classify them both
 Recurse down the negative half-space
 Recurse down the positive half-space

BSP Tree Traversal: Polygons

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 30

 Useful demo:
 http://symbolcraft.com/graphics/bsp

BSP Demo

 Pros:
 Simple, elegant scheme
 Correct version of painter’s algorithm back-to-front

rendering approach
 Still very popular for video games

 Cons:
 Slow(ish) to construct tree: O(n log n) to split, sort
 Splitting increases polygon count: O(n2) worst-case
 Computationally intense preprocessing stage

restricts algorithm to static scenes

Summary: BSP Trees

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 31

 Bounding Volumes:
 Find simple object completely enclosing

complicated objects
 Boxes, spheres

 Hierarchically combine into larger bounding
volumes

 Spatial subdivision data structure:
 Partition the whole space into cells

 Grids, octrees, (BSP trees)
 Simplifies and accelerates traversal
 Performance less dependent on order in which

objects are inserted

Spatial Subdivision Data Structures

 So far:
 All lights were either point-shaped or directional

 Both for ray-tracing and the rendering pipeline
 Thus, at every point, we only need to compute

lighting formula and shadowing for ONE
direction per light

 In reality:
 All lights have a finite area
 Instead of just dealing with one direction, we

now have to integrate over all directions that go
to the light source

Soft Shadows: Area Light Sources

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 32

 Area lights produce soft shadows:
 In 2D:

Area Light Sources

Area light

Occluding surface

Receiving surface

Umbra
(core shadow)

Penumbra
(partial shadow)

 Point lights:
 Only one light direction:

 V is visibility of light (0
or 1)

  is lighting
model (e.g.
diffuse or Phong)

Area Light Sources

Ireflected   V  Ilight

Point light

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 33

 Area Lights:
 Infinitely many light rays
 Need to integrate

over all of them:

 Lighting model
visibility and
light intensity
can now be different
for every ray!

Are Light Sources

Ireflected  () V ()  Ilight ()  d
light
directions



Area light

 Rewrite the integration
 Instead of integrating over directions

integrate over points on the light source

 q point on reflecting surface
 p= F(s,t) point on the area light
 We are integrating over p

Integrating over Light Source

 
ts

lightreflected dtdspIqpVqpqI
,

)()()()(

Ireflected  () V ()  Ilight ()  d
light
directions



Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 34

 Problem:
 Except for basic case not solvable analytically!

 Largely due to the visibility term

 So:
 Use numerical integration = approximate light

with lots of point lights

Integration

 Regular grid of point lights
 Problem: Too regular

see 4 hard shadows

 Need LOTS of points
to avoid this problem

Numerical Integration

Area light

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 35

 Better:
 Randomly choose

the points
 Use different points on

light for computing the
lighting in different points
on reflecting surface

 Produces
random noise
 Visually preferable to

structured artifacts !!!

Monte Carlo Integration

Area light

Monte Carlo Integration

one shadow ray

lots of shadow rays

Computer GraphicsComputer Graphics

Copyright 2012, Alla Sheffer, UBC

Ray Tracing

Page 36

 Note:
 This approach of approximating lighting

integrals with sums over randomly chosen
points is much more flexible than this!

 In particular, it can be used for global
illumination
 Light bouncing off multiple surfaces before

hitting the eye

Monte Carlo Integration

