
CPSC 314
Assignment 4: Ray Tracer and Post-Processing

Due 4PM, Nov 29, 2013

This assignment will be done in pairs. The motivation is for you to experience pair pro-
gramming (http://en.wikipedia.org/wiki/Pair programming) and also reduce the individual
workload/stress. The assignment consists of two parts. In part 1 you will implement a
simple raytracer that supports spheres, planes, triangle meshes, and optionally other types
of surfaces. In part 2 you will write shaders to apply basic post-processing effects to the
images output from part 1. We recommend that each pair works together on both parts and
not split it down the middle.

Template: The template code is found in the main assignment directory. Part 1 has you
making additions to three of the template code files: object.cpp, raytracer.cpp, and
mesh.cpp. In part 2 you will be modifying filter.frag, filter.vert, and filter.cpp.
You do not need to make any changes to the other source files (though you can if you wish
when implementing optional extra features).
There are two subdirectories, to be used for the raytracing in part 1: scenes and meshes.
The scenes directory contains scene descriptions in the .ray format, describing the follow-
ing scene parameters: Dimensions, Perspective, LookAt, Material, PushMatrix, PopMatrix,
Translate, Rotate, Scale, Sphere, Plane, Mesh, and PointLight. The comments in those
files describe the format. A few triangle meshes in OBJ format are provided in the meshes

directory, and most of the scene files depend on one or more of these.

Execution: The README contains instructions for compiling and running your raytracer
and post processor. The raytracer binary takes two optional arguments: the name of
the scene description, and the name of the output PPM image files. The defaults are
scenes/basic.ray and output.ppm. Furthermore, the binary accepts a flag prior to these
inputs that will be stored in an internal integer in the filter. This value will be used in part
2 to allow you to swap between different filter functionality. In general the input will look
like:
"raytracer.exe [-#] [scene desc file] [output file]"

Part 1 of the assignment (the raytracer) outputs 2 image files: a color image, and a black-
and-white depth map image which will be useful when debugging the program. As mentioned

1



CPSC 314 Assignment 4 Nov 29, 2013

above, the name of the output file is given by the specified input, and the name of the depth
map image file is filename depth.ppm, where filename.ppm is the specified output image
file.
Part 2 of the assignment takes as input the two output files from part 1, and outputs two
new images which are the input images with post-processing applied. The names of the
processed images are modified filename.ppm, where filename is the filename of the image
that has been processed.
Reference solution executables raytracer sol and raytracer sol.exe are provided for
comparison. Use them on the provided scenes to generate reference images.

1 RayTracer (70)

The raytracer should cast primary rays into the scene, which spawn shadow rays and sec-
ondary reflection/refraction rays. The goal of this part is to experiment with advanced
rendering tools and to get hands-on experience with both lighting and geometry manipula-
tion.
Extra credit points are available for extending your program to support additional features.

NOTE: Rendering very complicated scenes with many primitives (eg: the provided teapot
mesh has thousands of triangles) can take a long time! Make sure that whenever possible you
test and debug on simple scenes that only take a few seconds to render, rather than minutes
or hours. One of the optional components of the assignment is to implement acceleration
algorithms to speed up rendering. The reference solution raytracer sol doesn’t use any
complicated acceleration structures, so rendering complex scenes like teapot.ray may take a
while.

Steps:

• 12 pts Implement the missing parts of Raytracer::render and Raytracer::trace

for basic ray casting for all pixels in the image, using the camera location and the
coordinates of each pixel. You can test this code by re-computing the pixel as the
intersection of the ray and the view plane and testing that you obtain the same coor-
dinates back.

• 5 pts Implement Sphere::localIntersect. For this part you are required to calculate
if a ray has intersected your sphere. Be sure to cover all the possible intersection
scenarios(zero, one, and two points of intersection). Test your result by comparing the
output of your depth algorithm with the example solution’s results on the provided
scenes. You can also render the spheres using the diffuse coefficients provided.

• 5 pts Implement Plane::localIntersect. The implementation of this part is similar
to the previous part in that you are calculating if a line has intersected your plane. Test
this function in a similar way to the previous part (note that as you do new objects
will appear).

Page 2 of 5



CPSC 314 Assignment 4 Nov 29, 2013

• 6 pts Implement Mesh::intersectTriangle. This function calculates the point of
intersection of a ray with a triangle. The difference of this part when compared to the
plane intersection is in the bounds you must check. Think back through the course
and try to decide what equations might help you decide on which side of the bounding
lines of the triangle the ray intersects. Test this part just like the last two parts; when
triangle intersection is working properly, you should be able to see full meshes appear
in your scenes.

• 17 pts Implement the missing part of Raytracer::shade that does a lighting cal-
culation to find the color at a point. You should calculate the ambient, diffuse, and
specular terms. You should think of this part in terms of determining the color at the
point where the ray intersects the scene. Test your results by comparing to the ground
truth ones.

• 12 pts Implement the shadow ray calculation in Raytracer::shade and update the
lighting computation accordingly. You can think of this part as casting a second ray
from a point of intersection where your original ray has intersected to determine which
lights are contributing to the lighting at that point.

• 13 pts Implement the secondary ray recursion for reflection in Raytracer::shade.
Use the rayDepth recursion depth variable to stop the recursion process. (The default
used in the solution is 10.) Update the lighting computation at each step to account
for the secondary component. You can think of this part as an extended shadow ray
calculation, recursively iterating to determine contributing light (and weighting newly
determined light sources into the original pixel)

For those of you who want to explore, bonus marks will be given for implementing any of
the below ideas or something of similar complexity at the discretion of the marker.

• Implementing Conic::localIntersect to enable intersections between the rays and
generalized conical surfaces (http://en.wikipedia.org/wiki/Conical surface) . Note
that this requires detecting the bounding circles of the conics and accurately handling
those (to get finite cylinders/cones/ellipsoid parts).

• Implementing a secondary ray recursion for refraction rays. Use the same recursion
depth variable rayDepth as for reflection to stop the recursion process. Update the
lighting computation at each step to account for the secondary component.

• Texturing - use the provided Image class to import textures and access the texture
during ray-tracing to get a local diffuse color.

• Speed - consider speeding up your method using any of the space-partitioning methods
discussed in class. The template provides a timer which you can use to compare your
result to those of others and the ones in the solution.

• Gloss - use randomized direction estimation to account not only for specular but also
glossy surfaces.

Page 3 of 5



CPSC 314 Assignment 4 Nov 29, 2013

The comments in the template code above each section where are you required to add code
contain the details of the specification. They also contain many hints. The recommended
order of implementation is exactly the order we list the items above.

2 Post-Processing: Shaders (30)

In this part you will write shaders that should take the output images of the ray tracer as an
input and apply two filters: first the negative of the image, and second a vertical blur filter.
It is important to note that shaders errors are printed out to the terminal when the program
is run. When you first run the program there are errors compiling because the shader files
are empty. Once you have properly filled in the body the errors will go away (or be more
meaningful).
Negative Filter: 15 pts

• Complete Filter::processImage. This section requires you to bind the variables that
you want to use within the shaders. It should be noted that your original image is
bound to GL TEXTURE0. Look into the concept of shader uniforms :
http://www.opengl.org/wiki/Uniform %28GLSL%29

http://www.lighthouse3d.com/tutorials/glsl-tutorial/uniform-variables/

• Complete filter.vert by writing a pass-through vertex shader, where a pass-through
vertex shader takes as input the vertex position, and outputs the vertex position (it
does nothing). You are doing this because the fragment/pixel shader cannot work
unless there is geometry rendered for it to operate on. For further reading on vertex
and fragment shaders see:
http://www.opengl.org/wiki/Rendering Pipeline Overview.
For this assignment you can ignore all shaders other than vertex and fragment shader.

When programming a shader you use a programming language called GLSL (GL Shad-
ing Language). For this part you should use GLSL version 1.20, which is done by adding
the line ”#version 120” to the top of your shaders. Make sure that any code you find
while trying to learn GLSL is the correct version (or lower) as there are substantial
differences between the versions. In particular, this version will let you access the
build in shader variables: gl Vertex (in), gl Position (out)(in the vertex shader) and
gl FragColor(out) (in the fragment shader). For an introduction to GLSL see:
http://www.davidcornette.com/glsl/glsl.html and
http://nehe.gamedev.net/article/glsl an introduction/25007/

(this is also a good reference for vertex and fragment shaders)

• Complete filter.frag by writing a fragment (pixel) shader that computes the nega-
tive of the input image. (r, b, g)→ (1− r, 1− g, 1− b)

Vertical Blur Filter: 15 pts

Page 4 of 5



CPSC 314 Assignment 4 Nov 29, 2013

• Complete filter.frag by writing a fragment (pixel) shader that performs a vertical
blur, which is a weighted sum of adjacent pixels in the y direction. If (x, y) is your
current pixel, this requires you to sample the pixels of your input texture from (x, y-3)
to (x, y+3) (ie you use 7 samples) and compute their weighted sum with following
weights:
(1/64, 6/64, 15/64, 20/64, 15/64, 6/64, 1/64)
For more information on blur filters:
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/

• Your shader file should have an integer uniform variable to define which filter is applied.
(based on filter member variable ’type’ which is already set for you based on input flags
’-#’, where # is any number.)

For those of you who want to explore, bonus marks will be given, at the discretion of the
marker, for implementing any of the below ideas:

• Upgrade your blur filter to an efficient gaussian blur. This is done by modifying the
shader to perform different operations given some input uniform. A gaussian blur is
a multi-directional blur that can be considered to be a horizontal blur composed with a
vertical blur. http://www.gamerendering.com/2008/10/11/gaussian-blur-filter-shader/

• Create your own filter to apply to the image. It must be of similar or greater complexity
as compared to the blur filter. If in doubt please ask one of the TAs or instructor.

Hand-in Instructions: You do not have to hand in any printed code. Create a
README.txt file that includes your name, student number, and login ID for yourself, and
any information you would like to pass on the marker. Create a folder called ”assn4” under
your ”cs314” directory and put all the source files, your makefile, and your README.txt
file there. You MUST submit the images made by your program for the example
scenes provided. If you design extra-credit scenes, also submit the .ray file for them. In-
clude any images that you used as texture maps. Do not use further sub-directories. The
assignment should be handed in with the exact command:

handin cs314 assn4

Page 5 of 5


