CPSC 314: Programming Assignment 1

Due: 4:00 PM, Friday September 20, 2013

The goal of this assignment is to introduce you to OpenGL. You will experiment with draw-
ing and callback commands, and event-driven frameworks in general.

In the assignment you will implement a simple 2D game where the user controls a salmon
swimming upstream to spawn. Can your salmon dodge the turtles that rush by? You will
implement this game by building on top of a bare-bones instructor-provided template, adding
your code in appropriate callback routines, etc.

The assignment includes both a required (80%) and a free-form component (20%). The
goal of the latter is to let you experiment with computer graphics and have fun.

1. Getting started (15%):

(a)

Download and untar the source template, al.tar.gz. It includes a makefile, source
template files (al.cpp, salmon.hpp/cpp, turtle.hpp/cpp) and two executables:
‘al_sol’ for Linux, and ‘al_sol.exe’ for Win32. Download the tar package here:

www.ugrad.cs.ubc.ca/"cs314/Vsep2013/al/al.tar.gz

The department Linux machines should have all the libraries you need for the
assignment. If you work at home (Linux or Windows) you need to install the glut
libraries and headers on your machine. For installation help, consult:

http://www.opengl.org/resources/libraries/glut/glut_downloads.php
or
http://web.eecs.umich.edu/"sugih/courses/eecs487/glut-howto/#win

Run ‘al’ (al_win.exe in Windows) to get a sense of what a possible assignment
solution should look like. Use the mouse and arrow keys to control the salmon.
Press ‘r’ to reset the game if your salmon collides with a turtle. Use the ‘b’ and
‘a’ keys to switch between basic and advanced mode. You can also change the
speed of the river current with ‘<’ and ‘>’

Build the template executable. In Linux use the provided makefile. In Microsoft
Visual Studio 2012/2010 use the provided project files. Depending on your home
environment you might need to do other changes to make the code run.

1

CPSC 314

Programming Assignment 1 Sep 4, 2013

2. For a basic version of the game make the following changes to the provided template

(65%):

(a)

()

Movement: pressing the up/down arrow keys should make the salmon swim up
and down and pressing the left/right arrows should make it swim left or right.
Use the ‘keyboardSpecial()” and ‘keyboardSpecialUp()’ callback functions to keep
track of the state of the arrow keys. Then, modify the ‘animate()’ callback func-
tion to send movement commands to the salmon depending on the state of the
arrow keys. Use ‘Salmon::move()’ to tell the salmon how to move. Finally, you
will need to modify ‘Salmon::draw()’ in order to draw the salmon in the correct
position. Use the GLTranslate command to change the salmon position during
drawing.

Rotation: Provide mouse control for rotating the salmon, so that moving the
mouse to the left/right rotates the salmon clockwise/counterclockwise. In the
mouse_move() callback function, use previous and current mouse ‘x’ coordinates
to decide on the rotation direction and magnitude (ignore the ‘y’ coordinate). Set
the amount of rotation to be proportional to the mouse displacement magnitude
(choose a reasonable correlation between the two). Use ’Salmon::rotate()’ to tell
the salmon to rotate. Again, modify Salmon::draw() to use GLRotate to perform
the actual rotation during drawing.

Collision: Have the salmon and turtle react when there is a collision:

i. Salmon: There is a colour variable associated with the salmon. Your task is to
set this variable to a randomized valid colour value when the salmon collides
with a turtle. This should be done within the ‘Salmon::setRandomColour()’
function. You will also need to modify the salmon drawing function to use
this colour for the salmon body. Hint: look at how colours are set right now
for the salmon and other elements (RGBA).

ii. Turtle: Have the turtle light up when it collides with the salmon. When
contact occurs, generate one or more lights inside the turtle. To set the light,
modify the ‘Turtle::setupLight()’ function. Hint: Look at the ‘setup_lighting()’
function in ‘al.cpp’ and use a similar setup. Note that you need to use
GL_LIGHTO + light No as the identifier for the light.

3. The required code changes described so far will let you earn up to 80% of the grade.
To earn the remaining 20% as well as possible bonus marks you need to make the game
more appealing (the size of the bonus will be at the marker’s discretion). You could
add features found in the advanced mode of the demo, such as:

(a)
(b)

()

make the salmon “bounce” off the top and bottom walls when it runs into them

change the movement of the salmon to be consistent with its orientation, so that
the up/down keys move the salmon along the direction it is aligned with

give the salmon momentum so that it continues moving even when no arrow keys
are pressed

Pace 9 of 2

CPSC 314 Programming Assignment 1 Sep 4, 2013

Other possible changes not found in the demo include (but are not limited to!):
(a) improve the collision mechanism, e.g., can you tighten the salmon or turtle colli-
sion boundaries

(b) add additional visuals, either on the salmon or turtle (these can be animated or
static)

(c) randomize the turtles’ paths
(d) generate an interesting riverbed

(e) diversify the types of obstacles floating down the river, or add food that the
salmon can eat

(f) did someone say bubbles?

Use your imagination to make any other changes, however please make sure you focus
on tasks involving OpenGL knowledge.

To support both basic and advanced visualization and control features, you need to
add a toggle option where the user switches between the two modes by pushing the ‘a’
and ‘b’ keys (‘a’ for advanced mode and ‘b’ for basic mode).

Document all the features you add in the README file you submit with
the assignment. Advice: implement and test all the required tasks first
before starting the free-form part.

Hand-in Instructions

1. Create a root directory for our course in your account, called cs314. Later all the
assignment handin files should be put in this directory.

2. For assignment 1, create a folder called assnl under cs314 and put all the source files

that you want to handin in it, including the “makefile”. Don’t use subdirectories —
these will be deleted. NOTE: we only accept README, makefile and files
ending in cpp, hpp, c, h, txt.

3. The assignment should be handed in with the exact command:
handin cs314 assnl

This will handin your entire assnl directory tree by making a copy of your assnl
directory, and deleting all subdirectories! (If you want to know more about this
handin command, use: man handin.)

Pace 2 of 2

