
Computer GraphicsComputer Graphics Scan Conversion- Polygons

1

Copyright    2012. Alla Sheffer, UBC Page 1

Chapter 9

Scan Conversion (part 2)–
Drawing Polygons on Raster 

DisplayDisplay

Geometric Model/View
Lighting Perspective

Clipping

Geometry ProcessingGeometry Processing

Rendering Pipeline

Content
/

Transform. Lighting p
Transform. Clipping

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing



Computer GraphicsComputer Graphics Scan Conversion- Polygons

2

Copyright    2012. Alla Sheffer, UBC Page 2

Triangle/Polygon Rasterization

 Triangle (convex polygon) = intersection of 
edge half-spaces

fi d b f i li i li i

Implicit Formulation

 Defined by set of implicit line equations

++
--

++
-



Computer GraphicsComputer Graphics Scan Conversion- Polygons

3

Copyright    2012. Alla Sheffer, UBC Page 3

Usage:
 Go over each pixel on screen 

Using Implicit Edge Equations

 To be efficient restrict to bounding rectangle
 Check if pixel is inside/outside of triangle

 Use sign of edge equations

 Implicit equation of a triangle edge:

Computing Edge Equations

 see Bresenham algorithm
 L(x,y) positive on one side of edge, negative 

on the other

0))(())((),(  ssesse yyxxxxyyyxL

 What about the sign?
 Which side is in, which is out?



Computer GraphicsComputer Graphics Scan Conversion- Polygons

4

Copyright    2012. Alla Sheffer, UBC Page 4

 Determining the sign
 Which side is “in” and which is “out” depends 

d f t t/ d ti

Edge Equations

on order of start/end vertices…
 Convention: specify vertices in counter-

clockwise order

p3

p1

p2

p5

p5

p4

 Counter-Clockwise Triangles
 The equation L(x,y) as specified above is 

ti i id iti t id

Edge Equations

negative inside, positive outside
 Flip sign:

 Clockwise triangles
U i i l f l

L(x,y)  (ye  ys)(x  xs)  (y  ys)(xe  xs)  0

 Use original formula

L(x,y)  (ye  ys)(x  xs)  (y  ys)(xe  xs)  0



Computer GraphicsComputer Graphics Scan Conversion- Polygons

5

Copyright    2012. Alla Sheffer, UBC Page 5

 Implicit formulation works for any convex polygon 
 Doesn’t work for non-convex polygons 

Scan Conversion of Polygons

 Observation: 
 Straight line intersection                                 

with polygon = set of segments

 Alternative: algorithm based on                         
scan-line/edge intersections
 Works for general polygons
 Less per pixel computations

 General Algorithm
 Intersect each scanline with 

ll d

Scan Conversion of Polygons

all edges
 Sort intersections in x
 Calculate parity to 

determine in/out
 Fill the ‘in’ pixels

Effi i i t Efficiency improvement:
 Exploit row-to-row 

coherence using “edge 
table” 



Computer GraphicsComputer Graphics Scan Conversion- Polygons

6

Copyright    2012. Alla Sheffer, UBC Page 6

 Next intersection along edge determined from 
previous 

Edge Walking 

Lx

1

Lx Rx

1

Rx

Ty

By

Edge Walking

 Special case: Scan-converting a trapezoid
 Exploit continuous L and R edges

for (y=yB; y<=yT; y++) {

for (x=xL; x<=xR; x++)

setPixel(x,y);

scanTrapezoidscanTrapezoid(     ,     ,     ,     ,          ,          )(     ,     ,     ,     ,          ,          )Lx Rx By Ty
Lx Rx

 Predict intersections from one line to next

setPixel(x,y);

xL += DxL;

xR += DxR;

} 

Lx

1

Lx Rx

1

Rx

Ty

By



Computer GraphicsComputer Graphics Scan Conversion- Polygons

7

Copyright    2012. Alla Sheffer, UBC Page 7

 Split triangles into two “trapezoids” 
with continuous left and right edges

Edge Walking Triangles

1P

P

13m
12m

scanTrapezoid(     ,     ,     ,     ,      ,        )scanTrapezoid(     ,     ,     ,     ,      ,        )
13

1

m 12

1

m3x mx 3y 1y

scanTrapezoid(     ,     ,     ,     ,      ,       )scanTrapezoid(     ,     ,     ,     ,      ,       )
23

1

m 12

1

m2x 2x 2y 3y

3P

2P

mP

23m

Issues
 Many applications have small triangles

Edge Walking Triangles

 Setup cost is non-trivial
 Clipping triangles produces non-triangles

 Can be avoided through re-triangulation



Computer GraphicsComputer Graphics Scan Conversion- Polygons

8

Copyright    2012. Alla Sheffer, UBC Page 8

 Old hardware:
 Use edge-walking algorithm

Discussion

 Scan-convert edges, then fill in scanlines
 Compute interpolated values by interpolating 

along edges, then scanlines
 Requires clipping of polygons against viewing 

volume
Faster if you have a few large polygons Faster if you have a few, large polygons

 Possibly  faster in software

 Modern GPUs:
 Use edge equations

Discussion:

 Plus plane equations for attribute interpolation
 No clipping of primitives required

 Faster with many small triangles



Computer GraphicsComputer Graphics Scan Conversion- Polygons

9

Copyright    2012. Alla Sheffer, UBC Page 9

 Exactly which pixels should 
be lit?

h i l i id h

Rasterization Issues
(Independent of Algorithm)

 Those pixels inside the 
triangle edge (of course)

 But what about pixels exactly 
on the edge? 
 Don’t draw them: gaps 

possible between trianglespossible between triangles
 Draw them: order of 

triangles matters

 Shared Edge Ordering

Triangle Rasterization Issues

 Need a consistent (if arbitrary) rule 
 Example: draw pixels on left or top edge, but 

not on right or bottom edge



Computer GraphicsComputer Graphics Scan Conversion- Polygons

10

Copyright    2012. Alla Sheffer, UBC Page 10

 Sliver

Triangle Rasterization Issues

 Moving Slivers

Triangle Rasterization Issues



Computer GraphicsComputer Graphics Scan Conversion- Polygons

11

Copyright    2012. Alla Sheffer, UBC Page 11

 These are ALIASING Problems
 Problems associated with representing 

ti f ti (t i l ) ith fi it

Triangle Rasterization Issues

continuous functions (triangles) with finite 
resolution (pixels)

 More on this problem when we talk about 
sampling…

Shading

Assigning colors inside triangle interior



Computer GraphicsComputer Graphics Scan Conversion- Polygons

12

Copyright    2012. Alla Sheffer, UBC Page 12

Shading

 Input to Scan Conversion:
 Vertices of triangles (lines, quadrilaterals…)
 Color (per vertex)

 Specified with glColor
 Or: computed with lighting

 World-space normal (per vertex)
 Left over from lighting stage 

 Shading Task:
 Determine color of every pixel in the triangle

Shading

 How can we assign pixel colors using this 
information?

i fl h di Easiest: flat shading
 Whole triangle gets one color (color of 1st

vertex)
 Better: Gouraud shading

 Linearly interpolate color across triangle
Even better: Phong shading Even better: Phong shading
 Linearly interpolate the normal vector
 Compute lighting for every pixel
 Note: not supported by rendering pipeline as 

discussed so far



Computer GraphicsComputer Graphics Scan Conversion- Polygons

13

Copyright    2012. Alla Sheffer, UBC Page 13

 Simplest approach: calculate illumination at 
one point per polygon (e.g. center)

Flat Shading

 Obviously inaccurate for smooth surfaces

 If an object really is faceted, is this accurate?

Flat Shading Approximations



Computer GraphicsComputer Graphics Scan Conversion- Polygons

14

Copyright    2012. Alla Sheffer, UBC Page 14

 If an object really is faceted, is this accurate?

Flat Shading Approximations

 no!
 For point sources direction For point sources, direction                          

to light varies across the facet

 For specular reflectance,                        
direction to eye varies across the facet

 What if  we evaluate Phong lighting 
model at each pixel of the polygon?

b l ill l l

Improving Flat Shading

 Better, but result still clearly 
faceted

 Gouraud Shading: For smoother-
looking surfaces introduce vertex 
normals at each vertex

U ll diff t f f t l Usually different from facet normal
 Used only for shading
 Think of as a better approximation 

of the real surface that the 
polygons approximate



Computer GraphicsComputer Graphics Scan Conversion- Polygons

15

Copyright    2012. Alla Sheffer, UBC Page 15

 Vertex normals may be 
 Provided with the model

Vertex Normals

 Computed from first principles 
 Approximated by 

averaging the normals 
of the facets that 
share the vertex

 Often appears dull, chalky
 Lacks accurate specular component

Gouraud Shading Artifacts

 if included, will be averaged over entire 
polygon

C1 C1

C2

C3

this interior shading missed!
C2

C3

this vertex shading spread
over too much area



Computer GraphicsComputer Graphics Scan Conversion- Polygons

16

Copyright    2012. Alla Sheffer, UBC Page 16

Gouraud Shading Artifacts

 Mach bands
 Eye enhances discontinuity in first derivative
 Very disturbing, especially for highlights

 linearly interpolating surface normal across 
the facet, applying Phong lighting model at 
every pixel

Phong Shading

every pixel
 Same input as Gouraud shading
 Pro: much smoother results
 Con: considerably more expensive

 Not the same as Phong lighting
 Common confusion
 Phong lighting: empirical model to calculate 

illumination at a point on a surface



Computer GraphicsComputer Graphics Scan Conversion- Polygons

17

Copyright    2012. Alla Sheffer, UBC Page 17

 Linearly interpolate the vertex normals
 Compute lighting equations at each pixel

Phong Shading

 Can use specular component

N1

Itotal  kaIambient  Ii kd n  li  ks v  ri nshiny 
i1

# lights


remember: normals used in 
diffuse and specular terms

N2

N3

N4

diffuse and specular terms

discontinuity in normal’s rate of 
change harder to detect

Phong Shading Difficulties

 Computationally expensive
 Per-pixel vector normalization and lighting 

t ti !computation!
 Floating point operations required

 Lighting after perspective projection
 Messes up the angles between vectors
 Have to keep eye-space vectors around

 No direct support in standard rendering 
pipeline
 But can be simulated with texture mapping, 

procedural shading hardware



Computer GraphicsComputer Graphics Scan Conversion- Polygons

18

Copyright    2012. Alla Sheffer, UBC Page 18

Shading Artifacts: Silhouettes

 Polygonal silhouettes remain

Gouraud              Phong

 Interpolate between vertices:
 z

Interpolation – access triangle interior

 r,g,b - colour components
 u,v  - texture coordinates
 - surface normals

 Equivalent
 Barycentric coordinates

zyx NNN ,,

y
 Bilinear interpolation
 Plane Interpolation



Computer GraphicsComputer Graphics Scan Conversion- Polygons

19

Copyright    2012. Alla Sheffer, UBC Page 19

 Area

Barycentric Coordinates

31212

1
PPPPA 

 Barycentric coordinates

31212
1P

P
3

21

,/

,/,/

21

1332

AAa

AAaAAa

PPP

PPPPPP





3P

2P

P
332211 PaPaPaP 

weighted combination of vertices

Barycentric Coordinates

332211 PaPaPaP 

1P (1,0,0)(1,0,0)

(0 0 1)(0 0 1) 50
02 a

1,,0

1

321

321




aaa

aaa

3P

2P

P

(0,1,0)(0,1,0)

(0,0,1)(0,0,1) 5.02 a

12 a



Computer GraphicsComputer Graphics Scan Conversion- Polygons

20

Copyright    2012. Alla Sheffer, UBC Page 20

Alternative formula: 
Bi-Linear Interpolation

 Interpolate quantity along L and R edges
 (as a function of y)
 Then interpolate quantity as a function of x

v1v1

yy

P(x,y)P(x,y)

v2v2

v3v3

vLvL vRvR

 Most common approach, and what OpenGL 
does

f h li h i h i

Bi-Linear Interpolation

 Perform Phong lighting at the vertices
 Linearly interpolate the resulting colors over 

faces
 Along edges
 Along scanlines

E i l t t

C1edge: mix of c1, c2

 Equivalent to 
Barycentric Coordinates!

C2

C3

edge: mix of c1, c3
interior: mix of c1, c2, c3



Computer GraphicsComputer Graphics Scan Conversion- Polygons

21

Copyright    2012. Alla Sheffer, UBC Page 21

 Formulation

Bi-Linear interpolation

RL P
cc

c
P

cc

c
P 







21

1

21

2

PP11 dd

PP33 PPLL PPRRPP

3
21

1
2

21

2 P
dd

d
P

dd

d
PL 






1
21

1
2

21

2 P
bb

b
P

bb

b
PR 






cc11: c: c22

PP22



























 1
21

1
2

21

2

21

1
3

21

1
2

21

2

21

2 P
bb

b
P

bb

b

cc

c
P

dd

d
P

dd

d

cc

c
P

 Observation: Values vary linearly in image plane
 E.g.: r = Ax + By + C

Another Alternative: 
Plane Equation

 r= red channel of the color
 Same for g, b, Nx, Ny, Nz, z…

 From info at vertices we know:
p3p3

r1  Ax1  By1  C

r2  Ax2  By2  C

 Solve for A, B, C
 One-time set-up cost per triangle & interpolated 

value

p1p1

p2p2

2 2 y2

r3  Ax3  By3  C



Computer GraphicsComputer Graphics Scan Conversion- Polygons

22

Copyright    2012. Alla Sheffer, UBC Page 22

Discussion

 Which algorithm (formula) to use when?
 Bi-linear interpolation

 Together with trapezoid scan conversion
 Plane equations

 Together with implicit (edge equation) scan 
conversion

 Barycentric coordinates
Too expensive in current context Too expensive in current context 

 But: method of choice for ray-tracing
 Whenever you only need to compute the value for a 

single pixel

 All formulations should provide same value 
 Can verify barycentric properties

Validation

1,,0

1

321

321




aaa

aaa


