Computer Graphics lllumination Models

* Factors

= Light sources
= Location, type & color

* Chapter 6 = Surface materials
I

= How surfaces reflect
light
= Transport of light
= How light moves in a scene
= Viewer position

Lighting

* Rendering Pipeline * Illumination Models/Algorithms
. = Local illumination - Fast

= Ignore real physics, approximate the look

= Interaction of each object with light
Rasterization Fragment Processing

= Compute on surface (light to viewer)
= Global illumination — Slow
= Physically based
= Interactions between objects

—

BC
Lighting/Shading * Materials

= Goal

= Model the interaction of light with surfaces to
render realistic images

= Generate per (pixel/vertex) color

= Surface reflectance:

= Illuminate surface point with a ray of light
from different directions

= How much light is reflected in each direction?

Copyright 2012, Alla Sheffer, UBC Page 1



Computer Graphics lllumination Models

Specular Material :.’ Basic Types o

 diffuse . glossy . mirror

;z 3 3*
’
¥ AT 7

Diffuse Material :.’ Reflectance Distribution Model

= Most surfaces exhibit complex reflectances
= Vary with incident and reflected directions.

= Model with combination — known as BRDF
= BRDF: Bidirectional Reflectance Distribution Function

N\

Glossy Material :-’ BRDF measurements/plots

- Light Folding  Focusing
u2D slice minmr | lems

Polarizer.

Copyright 2012, Alla Sheffer, UBC Page 2



Computer Graphics

IlHlumination Models

!. Practical Considerations

= In practice, often simplify (computational
efficiency)

= Derive specific formulas that describe basic
reflectance behaviors
= diffuse, glossy, specular
= OpenGL choice

‘_:| Computing Diffuse Reflection

= Depends on angle of incidence: angle between
surface normal and incoming light

- Idlffuse = kd Illgh! cos 6
= In practice use vector arithmetic
= laitruse = Kg bigne (N = 1) 6
= Always normalize vectors used in lighting \',
= n, | should be unit vectors
= Scalar (B/W intensity) or 3-tuple or 4-tuple (color)
= ky: diffuse coefficient, surface color
= Ijgne: incoming light intensity

= Iymuse: OUtgoiNg light intensity (for
diffuse reflection)

Physics of Diffuse Reflection

= Ideal diffuse reflection
= Very rough surface at the microscopic level
= Real-world example: chalk
= Microscopic variations mean incoming ray of

light equally likely to be reflected in any
direction over the hemisphere

= Reflected intensity only depends on light
direction!

2

Diffuse Lighting Examples

= need only consider angles from 0° to 90°

= Lambertian sphere from several lighting angles:

!- Lambert’s “Law”

Lambert's Cosine Law
) ‘:\l{ , \]V,

Intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

Physics of Specular Reflection

= Geometry of specular (perfect mirror)
reflection

= Snell’s law

r =-l4+2(n*ln

Copyright 2012, Alla Sheffer, UBC

Page 3




Computer Graphics

IlHlumination Models

Empirical Approximation =

= Snell’s law = perfect mirror-like surfaces
= But ..
= few surfaces exhibit perfect specularity
= Gaze and reflection directions never EXACTLY
coincide
= Expect most reflected light to travel in
direction predicted by Snell’s Law
= But some light may be reflected in a direction
slightly off the ideal reflected ray
= As angle from ideal reflected ray increases,
we expect less light to be reflected

UBC
i Phong Examples i
R

n -
Ispecular = ksl light (COS ¢) s _ Fl

/
varying I a "‘I\)

.... |

varying ns

99000

Empirical Approximation i)
= Angular falloff
n

/

™|

= How to model this falloff?

LBC
Calculating Phong Lighting s

= compute cosine term of Phong lighting with vectors

— n —
_ksllight(v'r) ) _ R
V: unit vector towards viewer/eye l ¢

! s viewer/ey ol
r: ideal reflectance direction (unit vector) 1

ks: specular component = highlight color
Ligne: incoming light intensity

Ispecular

~i

shadingmodel

i Phong Lighting

= Most common lighting model in computer graphics
= (Phong Bui-Tuong, 1975)
n
— S
=kl light (cos¢)

Ispecular

¢: angle between r and view
direction v

n, : purely empirical constant, varies l
rate of falloff

kﬁ: specular coefficient, highlight
color

no physical basis, works ok in
practice

. . UBC
Materials (last bit)

= Lightis linear
« If multiple rays illuminate the surface point the
result is just the sum of the individual
reflections for each ray

le(kd (n-1,) +k.(r,-v)")

Copyright 2012, Alla Sheffer, UBC

Page 4



Computer Graphics

Light Sources 3

= Point source
= light originates at a point %\\

= Rays hit planar surface at different
angles

= Parallel source
= light rays are parallel
= Rays hit a planar surface at identical é%
angles

= Can model as point source at infinity
= Directional light

IlHlumination Models

uBC

Ambient Light Sources

= Scene lit only with an ambient light source

= Area source
= Light originates at finite area in space. ///\\\
= In-between point and parallel

sources

= Spotlights
= position, direction, angle S:

= Ambient light (environment light)
= Hack for replacing true global illumination

= (light bouncing off from other objects)

‘_.’ Light Sources

‘_.’ Directional Light Sources

= Scene lit with directional and ambient light

&

4
i

i

Ambient Light

= Non-directional light — environment light

= Object illuminated with same light
everywhere

= Looks like silhouette
= Illumination equation 1 = 1.k,
= |,- ambient light intensity
= k- fraction of this light reflected from surface

Copyright 2012, Alla Sheffer, UBC

Point Light Sources

= Scene lit with ambient and point light source

Page 5




Computer Graphics

Light Source Falloff

area that hits the object

decreases quadratically with distance

Area 4nr?

Area 4m(2r)2

= Quadratic falloff (point- and spot lights)
= Brightness of objects depends on power per unit

= The power per unit area for a point or spot light

IlHlumination Models

Light 5=

= Light has color
= Interacts with object color (r,g,b)
=1k,
L=l Lo L)
Ka = (Ko Kag Kap)
I = (Ir! lg! lb) = (larkar' |agkagv Iabkab)

= Blue light on white surface? tg‘:
= Blue light on red surface?

Light Source Falloff

= Non-quadratic falloff
= Many systems allow for other falloffs

= OpenGL / graphics hardware
= |,: intensity of light source
= X: object point
= r: distance of light from x

1

L ()=— .
() ar’ +br+c

Iy

= Allows for faking effect of area light sources

LIBC

Lighting in OpenGL ]

= Light source: amount of RGB light emitted
= value = percentage of full intensity,
e.g., (1.0,0.5,0.5)
= every light source emits ambient, diffuse, and
specular light
= Materials: amount of RGB light reflected
= value represents percentage reflected
e.g., (0.0,1.0,0.5)
= Interaction: multiply components
= Red light (1,0,0) x green surface (0,1,0) =
black (0,0,0)

Illumination Equation

= For multiple light sources:

=1+ D (01,) 1, )

shadingmodel

attenuation function

= d,- distance between surface and light source
+ distance between surface and viewer, A —

b A" 4

Copyright 2012, Alla Sheffer, UBC

UBC
In OpenGL

= k,,k,, k- surface color (RGB)

= Modify by glMaterialfv(GL_FRONT_AND_BACK ,
pname, RGBJ] )

= pname - GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

= Light source properties (also RGB)
glLightfv(GL_LIGHTi,pname,light[])

Page 6



Computer Graphics

UBC
Lighting in OpenGL

glLightfv(GL_LIGHTO, GL_AMBIENT, amb_light_rgba );
glLightfv(GL_LIGHTO, GL_DIFFUSE, dif_light_rgba );
glLightfv(GL_LIGHTO, GL_SPECULAR, spec_light_rgba );
glLightfv(GL_LIGHTO, GL_POSITION, position);
glEnable(GL_LIGHTO);

glMaterialfv( GL_FRONT, GL_AMBIENT, ambient_rgba );
glMaterialfv( GL_FRONT, GL_DIFFUSE, diffuse_rgba );
glMaterialfv( GL_FRONT, GL_SPECULAR, specular_rgba );
glMaterialfv( GL_FRONT, GL_SHININESS, n );

UBC
Light Sources - OpenGL s

= Specify parameters
glLightfv(GL_LIGHTi,GL_POSITION,light[])
i — between 0 & 8 (or more)

= Directional [x y z 0]

= Pointsource [x y z 1]

= Spotlight has extra parameters:

= GL_SPOT_DIRECTION, GL_SPOT_EXPONENT,
GL_SPOT_CUTOFF

= Area source — too complex for projective
pipeline (e.g. OpenGL)

3 Lighting in Rendering Pipeline

= Notes:

= Lighting is applied to every vertex
= i.e. the three vertices in a triangle
= Per-vertex lighting

= Will later see how the interior points of the

triangle obtain their color

= This process is called shading
= Will discuss in the context of scan conversion

Copyright 2012, Alla Sheffer, UBC

IlHlumination Models

Page 7



