Rendering Pipeline/
Computer Graphics OpenGL

Grading

= Programming Assignments: 40%

= 2D Game: Intro to OpenGL (6%) — out now
* Chapter 2 _ o
| = 3D Transformations — modeling/animation (11%)
Basics of Computer Graphics: = Rendering pipeline (11%)

Rendering Pipeline/OpenGL

Ray tracing (12%) [

computer
graphics
expert

: UBC
:.’ Grading &)

= Participation (2%)

.. . = Classroom: Clickerresponses + classroom
Course Info/Policies (boring stuff): involvement

* http:www.ugrad.cs.ubc.ca/~cs314 = Post two weekly review questions
T = Based on material covered each week

= Submit via DB (private, rev# tag)
till Mon 9AM

= Include: question, multiple choice answers,
explanation

Grading

!- Grading

= Programming Assignments: 40% = Mini Home Quizes: (3%)
= Online (connect.ubc.ca) quiz each week (from week 2)

Weekly Mini Home Quizes: 3%

= Released by Tue AM, Due Friday 9AM
= Participation 2%

= Classroom
= Review question composition

= Multiple choice questions
= Student/instructor composed
= If your question selected - double your quiz grade !!!
= If two selected triple..) —

= Two Midterms: 25% /'
= 12% +13%

computer
graphics
expert

computer
graphics

= Final Exam: 30% expert

Copyright A. Sheffer, 2012, UBC
Page 1

Computer Graphics

Important Dates

= Assignment 1 due: Sep 21
= Assignment 2 due: Oct 12
= Assignment 3 due: Nov 2

= Assignment 4 due: Nov 30

= Midterm 1: Oct 19
= Midterm 2: Nov 9

Rendering Pipeline/
OpenGL

. . UBC
:.| Literature (optional) Jl

= Fundamentals of Computer Graphics

= Third edition (second is OK too — but note
syllabus changes)

= Peter Shirley, A.K. Peters

= OpenGL Programming Guide

= J. Neider, T. Davis and W. Mason, Addison-
Wesley

!. Course Organization

= Programming assignments:
= C++, Windows or Linux
= Tested on department Linux machines

= OpenGL graphics library / GLUT for user
interface

= Face to face grading in lab
= Opportunity to show all the “cool” extra stuff

= Test that you do know what every piece of your
code does

= Hall of fame — coolest projects from 2002 on

!.’ Learning OpenGL

= This is a graphics course using OpenGL
= not a course ON OpenGL
= Upper-level class: learning APIs mostly on
your own
= only minimal lecture coverage
= basics, some of the tricky bits
= OpenGL Red Book
= many tutorial sites on the web
= http://www.xmission.com/~nate/opengl.html

!- Late/Missing Work

= Programming Assignments:
= 3 grace days TOTAL
« for unforeseen circumstances
= strong recommendation: don't use early in term
= handing in late uses up automatically unless you tell us
= Home Quizes/Review Question Sets
= Can miss two of each
= Exception: severe illness/crisis, as per UBC rules
= MUST
= Get approval from me ASAP (in person or email)
= Turn in proper documentation

Copyright A. Sheffer, 2012, UBC

!-| Plagiarism and Cheating

= Short Summary: Don't cheat

= Home quizes and programming assignments are individual
work

= Can discuss ideas (including on DB), browse Web
= But cannot copy code or answers/questions
= If you REALLY think using a source is OK cite it
= Must be able to explain algorithms during face-
to-face demo
= or no credit for that assignment, possible prosecution

Page 2

Computer Graphics

uBC

Basics of Computer Graphics:
Rendering Pipeline

Rendering Pipeline/

OpenGL

i The Rendering Pipeline BPs

Geometry Processing

Rasterization Fragment Processing

‘_.’ Rendering

Goal:
= Transform (3D) computer models into images
= Photo-realistic (or not)
Interactive rendering:
= Fast, but until recently low quality
= Roughly follows a fixed patterns of operations
» Rendering Pipeline
Offline rendering:
= Ray-tracing
= Global illumination

Rendering Pipeline EmR

= Abstract model of

= sequence of operations to transform
geometric model into digital image

= graphics hardware workflow

= Underlying API (application programming
interface) model for programming graphics
hardware

= OpenGL
= Direct 3D

= Actual implementations vary

BC
Rendering Tasks (no particular order)

= Project 3D geometry onto image plane
= Geometric transformations

= Determine which primitives/parts of primitives
are visible

= Hidden surface removal

= Determine which pixels geometric primitive
covers

= Scan conversion
= Compute color of every visible surface point
= Lighting, shading, texture mapping

Copyright A. Sheffer, 2012, UBC

Advantages of pipeline structure?

= Logical separation of different components,
modularity
= Easy to parallelize:

= Earlier stages can already work on new data
while later stages still work with previous data

= Similar to pipelining in modern CPUs

= But much more aggressive parallelization
possible (special purpose hardware!)

= Important for hardware implementations!

= Only local knowledge of the scene is
necessary

Page 3

Computer Graphics

Rendering Pipeline/
OpenGL

U
Disadvantages?

= Limited flexibility

= Some algorithms would require different
ordering of pipeline stages
= Hard to achieve while still preserving

compatibility

= Only local knowledge of scene is available
= Shadows
= Global illumination

OpenGL

l'iii

= API for graphics hardware
= Started in 1989 by Kurt Akeley
= Designed to exploit graphics hardware
= Implemented on many different platforms

= Pipeline processing
= Eventdriven
= Communication via state setting

LBC
!. (Tentative) Lecture Syllabus]

= Introduction + Rendering = Lighting Models (week 8)

Pipeline (week 1/2) = Texture mapping (week 9/10)
= Transformations (week 2/3) . Review & Midterm (week 10)
= Scan Conversion (week 4/5) = Midterm: Nov 9
= Clipping (week 5) = Ray Tracing (week 11)
= Hidden Surface Removal = Shadows (week 11/12)
(week 6/7)

= Modeling (content creation)
= Review & Midterm (week 7) (week 12/13)

= Midterm: Oct 19 = Review (last lecture)

LIBC
GLUT: OpenGL Utility Toolkit G

= Eventdriven !l

int main(int argc, char **argv)

{
// Initialize GLUT and open a window.
glutlnit(&argc, argv);
glutinitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
glutlnitWindowSize(800, 600);
glutCreateWindow(argv[0]);

// Register a bunch of callbacks for GLUT events.
glutDisplayFunc(display);
glutReshapeFunc(reshape);

// Pass control to GLUT.
glutMainLoop(Q);

return O;

Rendering Pipeline Implementation:
* OpenGL/GLut
|

Event-Driven Programming

= Main loop not under your control
= VS. procedural
= Control flow through event callbacks
= redraw the window now
= key was pressed
= mouse moved

= Callback functions called from main loop
when events occur

= mouse/keyboard, redrawing...

Copyright A. Sheffer, 2012, UBC

Page 4

Computer Graphics

Rendering Pipeline/
OpenGL

UBC
Graphics State (global variables)

= Set state once, remains until overwritten

= glColor3f(1.0, 1.0, 0.0) > set color to yellow
= glSetClearColor(0.0, 0.0, 0.2) - dark blue bg
= glEnable(LIGHTO) - turn on light

= glEnable(GL_DEPTH_TEST) - hidden surf.

GLUT Input Events

// you supply these kind of functions

void reshape(int w, int h);
void keyboard(unsigned char key, int x, int y);
void mouse(int but, int state, Int x, Int y);

// register them with glut

glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMouseFunc(mouseg;

OpenGL/GLUT Example

void display(void) {// Called when need to redraw screen.
// Clear the buffer we will draw into.
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);

// Initialize the modelview matrix.
glIMatrixMode(GL_MODELVIEW) ;
glLoadldentity();

// Draw STUFF

// Make the buffer we just drew into visible.
glutSwapBuffers();

GLUT and GLU primitives

gluSphere(...)
gluCylinder(...)

glutSolidSphere(GLdouble radius, GLint slices, GLint stacks)
glutWireSphere(...)

glutSolidCube(GLdouble size)
glutWireCube(...)

glutSolidTorus(...)
glutWireTorus(...)

glutSolidTeapot(...)
glutWireTeapot(...)

= Note:
= Have limited set of parameters
= Control via global transformations (see al template)
= Need to save/restore setting

GLUT Example

int main(int argc, char *argv[]) {
// Schedule the first animation callback ASAP.
glutTimerFunc(0, animate, 0);
// Pass control to GLUT.

glutMainLoop();
return 0O;
¥
void animate(int last_frame = 0) {
// Do stuff
// Schedule the next frame.
int current_time = glutGet(GLUT_ELAPSED_TIME);
int next_frame = last_frame + 1000 / 30;
glutTimerFunc(MAX(0, next_frame - current_time),
animate, current_time);
¥

GLUT and GLU primitives

= Example (from al):

void Pad::draw() {
glColor3f(l, 1, 1);
glPushMatrix(); - save previous state
glTranslatef(x_, y_, 0);
glScalef(width_, height_, 1);
glNormal3f(0, 0, 1);
glBegin(GL_QUADS);
glVertex3f(-0.5, -0.5, 0);
glVertex3f(-0.5, 0.5, 0);
glVertex3f(0.5, 0.5, 0);
glVertex3f(0.5, -0.5, 0);
glEndQ);
glPopMatrix(); - Restore previous state

Copyright A. Sheffer, 2012, UBC

Page 5

Computer Graphics

ﬁ GLUT and GLU primitives S

= Basic Transformations:

// Different basic transformations
glTranslatef(.);

glRotatef(..);

glScalef(.);

Rendering Pipeline/

OpenGL

Assignment 1

= Experience OpenGL & GLUT
= Have FUN

= Description:
http://www.ugrad.cs.ubc.ca/~cs314/Vsep2012/al/al.pdf

= Deadline: Sep 21

‘_.’ Your tasks for the weekend

= Piazza Discussion Group:
= Register

= Post review questions by Mon 9AM
= Use private option, revl tag

= Assignment 1
= Test programming environment on lab
computers/Set laptop environment (optional)

= Should have all the necessary background after
this class

* Rendering Pipeline in (More) Detail
|

Your tasks for the weekend o

= Sign and Submit Plagiarism Form
= http://www.ugrad.cs.ubc.ca/~cs314/Vsep2012/plag.html

= Optional reading (Shirley: Introduction to CG)
= Math refresher: Chapters 2, 4
= Lots of math coming in the next few weeks

= Background on graphics: Chapter 1

Copyright A. Sheffer, 2012, UBC

‘_.| The Rendering Pipeline

Geometry

Rasterization Fragment Processing

—

Page 6

Computer Graphics

3D Content

= Needs to represent models for
= Shapes (objects)
= Relations between different shapes
= Object materials
= Light sources
= Camera

Rendering Pipeline/
OpenGL

:.| Explicit Functions

= Curves:
« yis a function of x: Y :=Sin(x)
= Only works in 2D

= Surfaces:
= ziis a function of x and y: Z :=Sin(x) +cos(y)
= Cannot define arbitrary shapes in 3D

!l] =

i

Shapes

= Different philosophies:
= Volumetric
= Boolean algebra with volumetric primitives
Spheres, cones, cylinders, tori, ...
= Boundary representation
= Single basic primitive
Triangles or triangle meshes, points, lines
= Higher order surface primitives with adjustable
parameters
E.g. “all polynomials of degree 2”
Splines, NURBS (details in CPSC 424)
Implicits

JBC

Parametric Functions L]

= Curves:

= 2D: x and y are functions of a parameter value
t

= 3D: X, y, and z are functions of a parameter
value t
cos(t)
C(t) :=| sin(t)
t

Curves/Surfaces

= Mathematical representations:
= Explicit functions

= Parametric functions

= Implicit functions

:-| Parametric Functions

Copyright A. Sheffer, 2012, UBC

= Surfaces:

= Surface S is defined as a function of
parameter values s, t

= Names of parameters can be different to
match intuition:

cos(¢) cos(9)

S(¢,0) :=| sin(g)cos(d)
sin(9)

Page 7

Computer Graphics

Shapes

= Implicit Surfaces:
= Surface defined by zero set (roots) of function
= E.g:

S(X,y,2): x> +y*+2*-1=0

Rendering Pipeline/

OpenGL

OpenGL — Shape Primitives

= How to interpret geometry
= gIBegin(<mode of geometric primitives>)
= mode = GL_TRIANGLE, GL_POLYGON, etc.

= Feed vertices
= glVertex3f(-1.0, 0.0, -1.0)
= glVertex3f(1.0, 0.0, -1.0)
= glVertex3f(0.0, 1.0, -1.0)

= Done
= glEnd()

= Triangles and Triangle Meshes:
= How to define a triangle?

& Shapes

* The Rendering Pipeline

Geometry Processing

e el)
S Enl=

Rasterization Fragment Processing

* Open GL: (Some) Shape Primitives

glPointSize(float size);

e glLineWidth(float width);
Ve w2 glColor3f(floatr, float g, float b);
GL_POINTS
vi
mﬂk—““w
——

b = TRIANGLE...

GL_LINES
glColor3f(0,1,0);
glBegin(GL_TRIANGLES);

v v glVertex3f(0.0f, 0.5F, 0.0F);
s, glVertex3f(-0.5F, -0.5F, 0.0Ff);
R glvertex3f(0.5F, -0.5F, 0.0Ff);

glEndQ);

Copyright A. Sheffer, 2012, UBC

* Modeling and Viewing Transformations

= Placing objects - Modeling transformations

= Map points from object coordinate system to
world coordinate system

= Placing camera - Viewing transformation

= Map points from world coordinate system
to camera (or eye) coordinate system

Page 8

Computer Graphics

Rendering Pipeline/
OpenGL

Modeling & Viewing Transformations (57,

= Types of transformations:
= Rotations, scaling, shearing

- O O
= Translations D B i_D

= Other transformations (not handled by
rendering pipeline):

= Freeform deformation |:| . [j:l

Modeling Transformations: LIBC _ . _ FLis
:. Obiect Placement S i Modeling & Viewing Transformation N

= Linear transformations
= Rotations, scaling, shearing
= Can be expressed as 3x3 matrix
= E.g. scaling (non uniform):

' 2 00
"I=|0 3 0]y
' 0 0 1)\z

N < X

Viewing Transformation:
i Camera Placement

UBC
Modeling & Viewing Transformation

= Affine transformations
= Linear transformations + translations
= Can be expressed as 3x3 matrix + 3 vector
= E.g. scale+ translation:

X' 2 0 0)(x t,
y'|=10 3 0|]y|+|t,
z 00 1)\z t

z

= Another representation: 4x4 homogeneous
matrix

Copyright A. Sheffer, 2012, UBC

Page 9

Computer Graphics

Rendering Pipeline/

OpenGL

Geometry Processing

’-- | --

Rasterization Fragment Processing

‘_.’ The Rendering Pipeline

i The Rendering Pipeline =B

Geometry Processing

Rasterization Fragment Processing

‘_.’ Lighting

LIBC
Perspective Transformation e

= Purpose:
= Project 3D geometry to 2D image plane
= Simulates a camera

= Camera model:
= Pinhole camera (single view point)
= Other, more complex camera models also
exist in computer graphics, but are less
common
= Thin lens cameras
= Full simulation of lens geometry

ik

‘_.| Perspective Projection

Copyright A. Sheffer, 2012, UBC

Page 10

10

Computer Graphics

* Perspective Transformation

= In computer graphics:
= Image plane conceptually in front of center of

pl'Oj ection L *

= Perspective transformations — subset of
projective transformations

= Linear & affine transformations also belong to
this class

= All projective transformations can be
expressed as 4x4 matrix operations

Rendering Pipeline/

OpenGL

* The Rendering Pipeline

Geometry Processing

Rasterization Fragment Processing

& The Rendering Pipeline

Geometry Processing

o e]
e [T

Rasterization Fragment Processing

* Scan Conversion/Rasterization

= Convert continuous 2D geometry to discrete
= Raster display — discrete grid of elements

= Terminology 9,
= Pixel: basic element on device)
drawing

= Resolution: number of rows & columns in
device
= Measured in

Absolute values (1K x 1K)
Density values (300 dots per inch)

= Screen Space: Discrete 2D Cartesian
coordinate system of the screen pixels

* Clipping

= Removing invisible geometry
= Geometry outside viewing frustum
= Plus too far or too near one

Copyright A. Sheffer, 2012, UBC

* Scan Conversion

Page 11

11

Rendering Pipeline/
Computer Graphics OpenGL

* Scan Conversion i i Scan Conversion LS

= Color interpolation

= Linearly interpolate per-pixel color from vertex
color values

y = Treat every channel of RGB color separately

color

* Scan Conversion * Scan Conversion

= Problem: = Color interpolation
= Line is infinitely thin, but image has finite = Example:
resolution
= Results in steps rather than a smooth line
= Jaggies red green blue
= Aliasing
= One of the fundamental problems in computer
graphics t t t

i The Rendering Pipeline

* Scan Conversion

Geometry

/1 \
/| i
\ m
: {

Rasterization Fragment Processing

~

Copyright A. Sheffer, 2012, UBC
Page 12

Computer Graphics

Rendering Pipeline/

OpenGL

‘_.’ Texturing

Gty

BC
i Displacement Mapping =S

: UBC
‘_.’ Texturing 7y

= Issues:
= Computing 3D/2D map (low distortion)
= How to map pixel from texture (texels) to
screen pixels
= Texture can appear widely distorted in
rendering
= Magnification / minification of textures
= Filtering of textures
= Preventing aliasing (anti-aliasing)

=

¥

‘_.| The Rendering Pipeline

Geometry Processin

Rasterization Fragment Processing

—

Copyright A. Sheffer, 2012, UBC

Page 13

13

Computer Graphics

Rendering Pipeline/

OpenGL

UBC
* Depth Test /Hidden Surface Removal |57

= Remove invisible geometry
= Parts that are hidden behind other geometry
= Possible Implementations:
= Per-fragment decision
= Depth buffer
= Object space decision
= Clipping polygons against each other
= Sorting polygons by distance from camera

LIBC
* Depth Test /Hidden Surface Removal |57,

LUBC
;’ The Rendering Pipeline

Geometry Processin

Model/View Perspective

Geometric Aqies o
Transform. gl "] Transform. Clipping _-‘

Content

]
1

Copyright A. Sheffer, 2012, UBC

|| Scan . ||| Depth . 1 Frame-
Conversion [] 1eXtUring Test | e buffer
Rasterization Fragment Processing
Page 14

14

Rendering Pipeline/
Computer Graphics OpenGL

Blending S

= Blending:
= Final image: write fragments to pixels
= Draw from farthest to nearest
= No blending — replace previous color
= Blending: combine new & old values with

some arithmetic operations

= Frame Buffer : video memory on graphics
board that holds resulting image & used to
display it

LBC
Not Handled: Reflection/Shadows [

Basics of Computer Graphics:
Rendering Pipeline

Copyright A. Sheffer, 2012, UBC
Page 15

