
Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

1

Copyright A. Sheffer, 2012, UBC
Page 1

Chapter 2

Basics of Computer Graphics:
Rendering Pipeline/OpenGL

Course Info/Policies (boring stuff):
http:www.ugrad.cs.ubc.ca/~cs314

Grading

 Programming Assignments: 40%

 Weekly Mini Home Quizes: 3%

 Participation 2%p
 Classroom
 Review question composition

 Two Midterms: 25%
 12% +13%

 Final Exam: 30%

computer
graphics

expert

Grading

 Programming Assignments: 40%

 2D Game: Intro to OpenGL (6%) – out now

 3D Transformations – modeling/animation (11%)

 Rendering pipeline (11%)

 Ray tracing (12%) computer
graphics

expert

Grading

 Participation (2%)
 Classroom: Clicker responses + classroom

involvement
 Post two weekly review questions

 Based on material covered each week

 Submit via DB (private, rev# tag)
 till Mon 9AM

 Include: question, multiple choice answers,
explanation

Grading

 Mini Home Quizes: (3%)
 Online (connect.ubc.ca) quiz each week (from week 2)

 Released by Tue AM, Due Friday 9AM

 Multiple choice questions
 Student/instructor composed
 If your question selected - double your quiz grade !!!
 If two selected triple..

computer
graphics

expert

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

2

Copyright A. Sheffer, 2012, UBC
Page 2

Important Dates

 Assignment 1 due: Sep 21
 Assignment 2 due: Oct 12
 Assignment 3 due: Nov 2
 Assignment 4 due: Nov 30

 Midterm 1: Oct 19
 Midterm 2: Nov 9

Course Organization

 Programming assignments:
 C++, Windows or Linux

 Tested on department Linux machines
 OpenGL graphics library / GLUT for user

interface

 Face to face grading in lab
 Opportunity to show all the “cool” extra stuff
 Test that you do know what every piece of your

code does

 Hall of fame – coolest projects from 2002 on

Late/Missing Work

 Programming Assignments:
 3 grace days TOTAL

 for unforeseen circumstances
 strong recommendation: don’t use early in term
 handing in late uses up automatically unless you tell us

 Home Quizes/Review Question Sets
 Can miss two of each

 Exception: severe illness/crisis, as per UBC rules
 MUST

 Get approval from me ASAP (in person or email)
 Turn in proper documentation

Literature (optional)

 Fundamentals of Computer Graphics
 Third edition (second is OK too – but note

syllabus changes)
 Peter Shirley A K Peters Peter Shirley, A.K. Peters

 OpenGL Programming Guide
 J. Neider, T. Davis and W. Mason, Addison-

Wesley

Learning OpenGL

 This is a graphics course using OpenGL
 not a course ON OpenGL

 Upper-level class: learning APIs mostly on
your own
 only minimal lecture coverage only minimal lecture coverage

 basics, some of the tricky bits
 OpenGL Red Book
 many tutorial sites on the web

 http://www.xmission.com/~nate/opengl.html

Plagiarism and Cheating

 Short Summary: Don’t cheat
 Home quizes and programming assignments are individual

work
 Can discuss ideas (including on DB), browse Web
 But cannot copy code or answers/questions

 If you REALLY think using a source is OK cite it

 Must be able to explain algorithms during face-
to-face demo
 or no credit for that assignment, possible prosecution

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

3

Copyright A. Sheffer, 2012, UBC
Page 3

Basics of Computer Graphics:
Rendering Pipeline

RenderingRendering

Goal:
 Transform (3D) computer models into images
 Photo-realistic (or not)

Interactive rendering:
Fast but until recently low quality Fast, but until recently low quality

 Roughly follows a fixed patterns of operations
 Rendering Pipeline

Offline rendering:
 Ray-tracing
 Global illumination

 Project 3D geometry onto image plane
 Geometric transformations

 Determine which primitives/parts of primitives
are visible
 Hidden surface removal

Rendering Tasks (no particular order)

 Hidden surface removal
 Determine which pixels geometric primitive

covers
 Scan conversion

 Compute color of every visible surface point
 Lighting, shading, texture mapping

The Rendering PipelineThe Rendering Pipeline

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Geometry ProcessingGeometry Processing

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

 Abstract model of
 sequence of operations to transform

geometric model into digital image
 graphics hardware workflow

 Underlying API (application programming

Rendering Pipeline

 Underlying API (application programming
interface) model for programming graphics
hardware
 OpenGL
 Direct 3D

 Actual implementations vary

Advantages of pipeline structure?Advantages of pipeline structure?

 Logical separation of different components,
modularity

 Easy to parallelize:
 Earlier stages can already work on new data

while later stages still work with previous datawhile later stages still work with previous data
 Similar to pipelining in modern CPUs
 But much more aggressive parallelization

possible (special purpose hardware!)
 Important for hardware implementations!

 Only local knowledge of the scene is
necessary

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

4

Copyright A. Sheffer, 2012, UBC
Page 4

Disadvantages?Disadvantages?

 Limited flexibility
 Some algorithms would require different

ordering of pipeline stages
 Hard to achieve while still preserving

compatibilitycompatibility
 Only local knowledge of scene is available

 Shadows
 Global illumination

(Tentative) Lecture Syllabus

 Introduction + Rendering
Pipeline (week 1/2)

 Transformations (week 2/3)
 Scan Conversion (week 4/5)
 Clipping (week 5)

Hidden Surface Removal

 Lighting Models (week 8)
 Texture mapping (week 9/10)
 Review & Midterm (week 10)

 Midterm: Nov 9
 Ray Tracing (week 11)

Sh d (k 11/12) Hidden Surface Removal
(week 6/7)

 Review & Midterm (week 7)
 Midterm: Oct 19

 Shadows (week 11/12)
 Modeling (content creation)

(week 12/13)
 Review (last lecture)

Rendering Pipeline Implementation:
OpenGL/GLut

 API for graphics hardware
 Started in 1989 by Kurt Akeley

 Designed to exploit graphics hardware
 Implemented on many different platforms

OpenGL

 Pipeline processing
 Event driven
 Communication via state setting

 Event driven !!!

GLUT: OpenGL Utility Toolkit

int main(int argc, char **argv)
{

// Initialize GLUT and open a window.
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
l tI itWi d Si (800 600)glutInitWindowSize(800, 600);
glutCreateWindow(argv[0]);

// Register a bunch of callbacks for GLUT events.
glutDisplayFunc(display);
glutReshapeFunc(reshape);

// Pass control to GLUT.
glutMainLoop();

return 0;
}

 Main loop not under your control
 vs. procedural

 Control flow through event callbacks
 redraw the window now
 key was pressed

Event-Driven Programming

 key was pressed
 mouse moved

 Callback functions called from main loop
when events occur
 mouse/keyboard, redrawing…

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

5

Copyright A. Sheffer, 2012, UBC
Page 5

 Set state once, remains until overwritten

 glColor3f(1.0, 1.0, 0.0) set color to yellow
 glSetClearColor(0.0, 0.0, 0.2) dark blue bg

glEnable(LIGHT0) turn on light

Graphics State (global variables)

 glEnable(LIGHT0) turn on light
 glEnable(GL_DEPTH_TEST) hidden surf.

void display(void) {// Called when need to redraw screen.

// Clear the buffer we will draw into.

glClearColor(0, 0, 0, 1);

glClear(GL_COLOR_BUFFER_BIT);

// Initialize the modelview matrix.

glMatrixMode(GL MODELVIEW);

OpenGL/GLUT Example

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

// Draw STUFF

// Make the buffer we just drew into visible.

glutSwapBuffers();

}

int main(int argc, char *argv[]) {
.....

// Schedule the first animation callback ASAP.

glutTimerFunc(0, animate, 0);

// Pass control to GLUT.

glutMainLoop();

return 0;

GLUT Example

;

}

void animate(int last_frame = 0) {

// Do stuff

// Schedule the next frame.

int current_time = glutGet(GLUT_ELAPSED_TIME);

int next_frame = last_frame + 1000 / 30;

glutTimerFunc(MAX(0, next_frame - current_time),
animate, current_time);

}

GLUT Input Events

// you supply these kind of functions

void reshape(int w, int h);
void keyboard(unsigned char key, int x, int y);
void mouse(int but, int state, int x, int y);

// register them with glut

glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMouseFunc(mouse);

GLUT and GLU primitives

gluSphere(...)
gluCylinder(...)

glutSolidSphere(GLdouble radius, GLint slices, GLint stacks)
glutWireSphere(...)

glutSolidCube(GLdouble size)
glutWireCube(...)

glutSolidTorus(...)

 Note:
 Have limited set of parameters
 Control via global transformations (see a1 template)
 Need to save/restore setting

g utSo d o us(...)
glutWireTorus(...)

glutSolidTeapot(...)
glutWireTeapot(...)

 Example (from a1):

void Pad::draw() {

glColor3f(1, 1, 1);

glPushMatrix();

glTranslatef(x_, y_, 0);

l l f(id h h i h 1)

GLUT and GLU primitives

 Save previous state

glScalef(width_, height_, 1);

glNormal3f(0, 0, 1);

glBegin(GL_QUADS);

glVertex3f(-0.5, -0.5, 0);

glVertex3f(-0.5, 0.5, 0);

glVertex3f(0.5, 0.5, 0);

glVertex3f(0.5, -0.5, 0);

glEnd();

glPopMatrix();

}
 Restore previous state

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

6

Copyright A. Sheffer, 2012, UBC
Page 6

 Basic Transformations:

GLUT and GLU primitives

// Different basic transformations// Different basic transformations

glTranslatefglTranslatef(…);(…);

glRotatefglRotatef(…);(…);

glScalefglScalef();();glScalefglScalef(…);(…);

Your tasks for the weekendYour tasks for the weekend

 Piazza Discussion Group:
 Register
 Post review questions by Mon 9AM

 Use private option, rev1 tag

 Assignment 1
 Test programming environment on lab

computers/Set laptop environment (optional)
 Should have all the necessary background after

this class

Your tasks for the weekendYour tasks for the weekend

 Sign and Submit Plagiarism Form
 http://www.ugrad.cs.ubc.ca/~cs314/Vsep2012/plag.html

 Optional reading (Shirley: Introduction to CG)
 Math refresher: Chapters 2, 4 Math refresher: Chapters 2, 4

 Lots of math coming in the next few weeks

 Background on graphics: Chapter 1

 Experience OpenGL & GLUT

 Have FUN

D i ti

Assignment 1

 Description:
http://www.ugrad.cs.ubc.ca/~cs314/Vsep2012/a1/a1.pdf

 Deadline: Sep 21

Rendering Pipeline in (More) Detail

The Rendering Pipeline

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Geometry ProcessingGeometry Processing

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

7

Copyright A. Sheffer, 2012, UBC
Page 7

 Needs to represent models for
 Shapes (objects)
 Relations between different shapes
 Object materials
 Light sources

3D Content

 Light sources
 Camera

 Different philosophies:
 Volumetric

 Boolean algebra with volumetric primitives
 Spheres, cones, cylinders, tori, …

 Boundary representation

Shapes

y p
 Single basic primitive

 Triangles or triangle meshes, points, lines

 Higher order surface primitives with adjustable
parameters
 E.g. “all polynomials of degree 2”
 Splines, NURBS (details in CPSC 424)
 Implicits

 Mathematical representations:
 Explicit functions

 Parametric functions

Curves/Surfaces

 Implicit functions

 Curves:
 y is a function of x:
 Only works in 2D

Explicit Functions

(x)y sin

 Surfaces:
 z is a function of x and y:
 Cannot define arbitrary shapes in 3D

)cos()sin(yxz

 Curves:
 2D: x and y are functions of a parameter value

t
 3D: x, y, and z are functions of a parameter

value t

Parametric Functions

t

t

t

tC)sin(

)cos(

)(

 Surfaces:
 Surface S is defined as a function of

parameter values s, t
 Names of parameters can be different to

match intuition:

Parametric Functions

)sin(

)cos()sin(

)cos()cos(

,(

S

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

8

Copyright A. Sheffer, 2012, UBC
Page 8

 Implicit Surfaces:
 Surface defined by zero set (roots) of function
 E.g:

Shapes

01:)(222 zyxzyxS 01:),,(zyxzyxS

 Triangles and Triangle Meshes:
 How to define a triangle?

Shapes

Open GL: (Some) Shape Primitives

glPointSizeglPointSize(float size);(float size);
glLineWidthglLineWidth(float width);(float width);
glColor3f(float r, float g, float b);glColor3f(float r, float g, float b);
........

TRIANGLE
glColor3f(0,1,0);glColor3f(0,1,0);
glBeginglBegin(GL_TRIANGLES);(GL_TRIANGLES);

glVertex3f(0.0f, 0.5f, 0.0f);glVertex3f(0.0f, 0.5f, 0.0f);
glVertex3f(glVertex3f(--0.5f, 0.5f, --0.5f, 0.0f);0.5f, 0.0f);
glVertex3f(0.5f, glVertex3f(0.5f, --0.5f, 0.0f);0.5f, 0.0f);

glEndglEnd();();

 TRIANGLE...

 How to interpret geometry
 glBegin(<mode of geometric primitives>)
 mode = GL_TRIANGLE, GL_POLYGON, etc.

 Feed vertices
 glVertex3f(-1.0, 0.0, -1.0)

OpenGL – Shape Primitives

g (, ,)
 glVertex3f(1.0, 0.0, -1.0)
 glVertex3f(0.0, 1.0, -1.0)

 Done
 glEnd()

The Rendering Pipeline

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Geometry ProcessingGeometry Processing

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

 Placing objects - Modeling transformations
 Map points from object coordinate system to

world coordinate system

 Placing camera - Viewing transformation

Modeling and Viewing Transformations

 Placing camera Viewing transformation
 Map points from world coordinate system

to camera (or eye) coordinate system

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

9

Copyright A. Sheffer, 2012, UBC
Page 9

Modeling Transformations:
Object Placement

Viewing Transformation:
Camera Placement

 Types of transformations:
 Rotations, scaling, shearing

Modeling & Viewing Transformations

 Translations

 Other transformations (not handled by
rendering pipeline):
 Freeform deformation

 Linear transformations
 Rotations, scaling, shearing
 Can be expressed as 3x3 matrix
 E.g. scaling (non uniform):

Modeling & Viewing Transformation

z

y

x

z

y

x

100

030

002

'

'

'

 Affine transformations
 Linear transformations + translations
 Can be expressed as 3x3 matrix + 3 vector
 E.g. scale+ translation:

Modeling & Viewing Transformation

 Another representation: 4x4 homogeneous
matrix

z

y

x

t

t

t

z

y

x

z

y

x

100

030

002

'

'

'

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

10

Copyright A. Sheffer, 2012, UBC
Page 10

The Rendering Pipeline

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Geometry ProcessingGeometry Processing

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

Lighting

Complex Lighting and Shading

The Rendering Pipeline

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Geometry ProcessingGeometry Processing

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

 Purpose:
 Project 3D geometry to 2D image plane
 Simulates a camera

 Camera model:

Perspective Transformation

 Camera model:
 Pinhole camera (single view point)
 Other, more complex camera models also

exist in computer graphics, but are less
common
 Thin lens cameras
 Full simulation of lens geometry

Perspective Projection

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

11

Copyright A. Sheffer, 2012, UBC
Page 11

 In computer graphics:
 Image plane conceptually in front of center of

projection

Perspective Transformation

 Perspective transformations – subset of
projective transformations

 Linear & affine transformations also belong to
this class

 All projective transformations can be
expressed as 4x4 matrix operations

The Rendering Pipeline

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Geometry ProcessingGeometry Processing

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

Clipping

 Removing invisible geometry
 Geometry outside viewing frustum
 Plus too far or too near one

The Rendering Pipeline

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Geometry ProcessingGeometry Processing

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

Scan Conversion/Rasterization

 Convert continuous 2D geometry to discrete
 Raster display – discrete grid of elements
 Terminology

 Pixel: basic element on device
drawing

 Resolution: number of rows & columns in
device
 Measured in

 Absolute values (1K x 1K)
 Density values (300 dots per inch)

 Screen Space: Discrete 2D Cartesian
coordinate system of the screen pixels

Scan Conversion

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

12

Copyright A. Sheffer, 2012, UBC
Page 12

Scan Conversion

 Problem:
 Line is infinitely thin, but image has finite

resolution
 Results in steps rather than a smooth line

 Jaggies

Scan Conversion

gg
 Aliasing

 One of the fundamental problems in computer
graphics

Scan Conversion

 Color interpolation
 Linearly interpolate per-pixel color from vertex

color values
 Treat every channel of RGB color separately

Scan Conversion

ss

tt

colorcolor

 Color interpolation
 Example:

Scan Conversion

redred greengreen blueblue

ss

tt

redred

ss

tt

greengreen

ss

tt

blueblue

The Rendering Pipeline

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Geometry ProcessingGeometry Processing

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

13

Copyright A. Sheffer, 2012, UBC
Page 13

Texturing

tt
(s(s00,t,t00))

(s(s22,t,t22))

ss

(s(s11,t,t11))

Texturing

tt
(s(s00,t,t00))

(s(s22,t,t22))

ss

(s(s11,t,t11))

Texture Mapping

Displacement Mapping

 Issues:
 Computing 3D/2D map (low distortion)
 How to map pixel from texture (texels) to

screen pixels
 Texture can appear widely distorted in

Texturing

pp y
rendering

 Magnification / minification of textures
 Filtering of textures
 Preventing aliasing (anti-aliasing)

The Rendering Pipeline

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Geometry ProcessingGeometry Processing

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

14

Copyright A. Sheffer, 2012, UBC
Page 14

Without Hidden Line Removal

Hidden Line Removal

Hidden Surface Removal

 Remove invisible geometry
 Parts that are hidden behind other geometry

 Possible Implementations:
 Per-fragment decision

Depth buffer

Depth Test /Hidden Surface Removal

 Depth buffer
 Object space decision

 Clipping polygons against each other
 Sorting polygons by distance from camera

Depth Test /Hidden Surface Removal

The Rendering Pipeline

Geometric
Content

Model/View
Transform. Lighting Perspective

Transform. Clipping

Geometry ProcessingGeometry Processing

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

Computer GraphicsComputer Graphics
Rendering Pipeline/

OpenGL

15

Copyright A. Sheffer, 2012, UBC
Page 15

 Blending:
 Final image: write fragments to pixels
 Draw from farthest to nearest
 No blending – replace previous color
 Blending: combine new & old values with

Blending

 Blending: combine new & old values with
some arithmetic operations

 Frame Buffer : video memory on graphics
board that holds resulting image & used to
display it

Not Handled: Reflection/Shadows

Basics of Computer Graphics:
Rendering Pipeline

