
Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 1

Ch t 11Chapter 11

Ray-Tracing

 Basic shading (rendering pipeline) = local
illumination model

bj i i

Global Illumination Models

 No object interaction
 Global illumination models require more

sophisticated, computation-intensive algorithms
 Ray Tracing
 Global Illumination/Radiosity

 Ray-tracing
 Usually offline (e.g. movies etc.)

 research on making real-time
 Flexible – can incorporate lots of phenomena

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 2

Ray-Tracing Algorithm

Image PlaneEye
Light
Source

Reflected
Ray

Shadow
Rays

Refracted
Ray

rayshow

 Mirror effects
 Perfect specular reflection

Reflection
n

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 3

 Interface between
transparent object and
surrounding medium

Refraction

n

surrounding medium
 E.g. glass/air boundary

 1

 2

2112 sinsin cc

 Light ray breaks (changes
direction) based on
refractive indices c1, c2

Snell’s Law

Basic Ray-Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)obj : FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin

if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,obj));

else
reflect_color := Black;

if (Transparent(obj)) then
f t l R T (R f tR (bj))refract_color := RayTrace(RefractRay(r,obj));

else
refract_color := Black;

return Shade(reflect_color,refract_color,obj);
end;

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 4

 ReflectRay(r,obj) – computes reflected ray
(use obj normal at intersection)

Sub-Routines

 RefractRay(r,obj) - computes refracted ray
 Note: ray is inside obj

 Shade(reflect color,refract color,obj) –S ade(e ect_co o , e act_co o ,obj)
compute illumination given three components

 Algorithm above has a BUG….

More About Ray-Tracing

 Does not terminate

 Termination Criteria
 No intersection
 Contribution of secondary ray attenuated Contribution of secondary ray attenuated

below threshold – each reflection/refraction
attenuates ray

 Maximal depth is reached

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 5

 Trace ray from each ray-object intersection
point to light sources

If h i bj i b

Simulating Shadows

 If the ray intersects an object in between
point is shadowed from the light source

shadow = RayTrace(LightRay(obj,r,light));

S (f f)return Shade(shadow,reflect_color,refract_color,obj);

Ray-Tracing With Shadows

Image Plane
Light
SourceEye

Reflected
Ray

Refracted
Ray

rayshow

Ray images

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 6

Geometric Model/View
Lighting Perspective

Clipping

Geometry ProcessingGeometry Processing

Replaces Rendering Pipeline!!!

Content
/

Transform. Lighting p
Transform. Clipping

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

 Generation of rays
 Intersection of rays with geometric primitives

Ray-Tracing: Practicalities

 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space
partitioningp g

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 7

 Camera Coordinate System
 Origin: C (camera position)

Ray-Tracing: Generation of Rays

vv

 Viewing direction: w
 Up vector: v
 u direction: u= wv

 Note:
 Corresponds to viewing

ww

xx
CC

p g
transformation in rendering pipeline!

 See gluLookAt…

 Other parameters:
 Distance to image plane: d

Ray-Tracing: Generation of Rays

vv

 Image resolution (in pixels): x, h

 Left, right, top, bottom boundaries
in image plane: l, r, t, b

 Then:
 Lower left corner of image: vbulwdCO

ww

uu
CC

 Pixel at position i, j (i=0..x-1, j=0..h-1):

vu

v
1

u
1,

vjuiO
h

bt
j

x

lr
iOP ji

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 8

 Ray in 3D Space:

Ray-Tracing: Generation of Rays

where t= 0…
jijiji tCCPtCt ,,,)()(R v

 Generation of rays
 Intersection of rays with geometric

Ray-Tracing: Practicalities

primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of spaceE.g. use BSP trees or other types of space
partitioning

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 9

 Kernel of ray-tracing must be extremely
efficient

ll l l f

Ray-Object Intersections

 Usually involves solving a set of equations
 Using implicit formulas for primitives

Example: Ray-Sphere intersection

ray: x t p v t y t p v t z t p v tx x y y z z() , () , () v
2 2 2(unit) sphere:

quadratic equation in t : p
x y z2 2 2 1

0 1

2

1

2 2 2

2 2 2 2

2 2 2

() () ()

() ()

()

p v t p v t p v t

t v v v t p v p v p v

p p p

x x y y z z

x y z x x y y z z

x y z

 Other Primitives:
 Implicit functions:

Ray Intersections

 Spheres at arbitrary positions
 Same thing

 Conic sections (hyperboloids, ellipsoids,
paraboloids, cones, cylinders)
 Same thing (all are quadratic functions!)

 Higher order functions (e.g. tori and other g (g
quartic functions)
 In principle the same
 But root-finding difficult
 Net to resolve to numerical methods

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 10

 Other Primitives (cont)
 Polygons:

Ray Intersections

 First intersect ray with plane
 linear implicit function

 Then test whether point is inside or outside of
polygon (2D test)

 For convex polygons
 Suffices to test whether point in on the right side of p g

every boundary edge
 Similar to computation of outcodes in line clipping

 Generation of rays
 Intersection of rays with geometric primitives

Ray-Tracing: Practicalities

 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space
partitioningp g

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 11

 Note: rays replace perspective transformation
 Geometric Transformations:

Ray-Tracing: Transformations

 Similar goal as in rendering pipeline:
 Modeling scenes convenient using different

coordinate systems for individual objects
 Problem:

 Not all object representations are easy to
transformtransform
 This problem is fixed in rendering pipeline by

restriction to polygons (affine invariance!)

 Ray Transformation:
 For intersection test, it is only important that ray

i i di t t bj t

Ray-Tracing: Transformations

is in same coordinate system as object
representation

 Transform all rays into object coordinates
 Transform camera point and ray direction by

inverse of model/view matrix
 Shading has to be done in world coordinates Shading has to be done in world coordinates

(where light sources are given)
 Transform object space intersection point to world

coordinates
 Thus have to keep both world and object-space ray

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 12

 Generation of rays
 Intersection of rays with geometric primitives

Ray-Tracing: Practicalities

 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space
partitioningp g

 Light sources:
 For the moment: point and directional lights

Ray-Tracing: Local Lighting

 More complex lights are possible
 Area lights
 Global illumination

 Other objects in the scene reflect light
 Everything is a light source!
 Talk about this on Mondayy

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 13

 Local surface information (normal…)
 For implicit surfaces F(x,y,z)=0: normal n(x,y,z)

b il t d t i t ti

Ray-Tracing: Local Lighting

can be easily computed at every intersection
point using the gradient

E l

zzyxF

yzyxF

xzyxF

zyx

/),,(

/),,(

/),,(

),,(n

 Example:
2222),,(rzyxzyxF

z

y

x

zyx

2

2

2

),,(n
Needs to be normalized!Needs to be normalized!

 Local surface information
 Alternatively: can interpolate per-vertex

i f ti f t i l / h i

Ray-Tracing: Local Lighting

information for triangles/meshes as in
rendering pipeline
 Phong shading!
 Same as discussed for rendering pipeline

 Difference to rendering pipeline:
Have to compute Barycentric coordinates for Have to compute Barycentric coordinates for
every intersection point (e.g plane equation for
triangles)

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 14

 Generation of rays
 Intersection of rays with geometric primitives

Ray-Tracing: Practicalities

 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection

tests

 Basic algorithm simple but VERY expensive
 Optimize…

Optimized Ray-Tracing

 Reduce number of rays traced
 Reduce number of ray-object intersection

calculations
 Methods

 Bounding Boxes
raytracer

g
 Spatial Subdivision

 Visibility & Intersection
 Tree Pruning

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 15

 Data Structures
 Goal: reduce number of intersection tests per

Ray Tracing

ray
 Lots of different approaches:

 (Hierarchical) bounding volumes
 Hierarchical space subdivision

 Octree, k-D tree, BSP tree

 Idea:
 Rather than test every ray against a potentially

l bj t (t i l h) d

Bounding Volumes

very complex object (e.g. triangle mesh), do a
quick conservative test first which eliminates most
rays
 Surround complex object by simple, easy to test

geometry (typically sphere or axis-aligned box)
 Reduce false positives: make bounding volume as tight as

possible!

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 16

 Extension of previous idea:
 Use bounding volumes for groups of objects

Hierarchical Bounding Volumes

 For any plane (3D) objects on the same side of
plane as viewer CANNOT be occluded by objects
on other side

BSP Trees: Idea

on other side
 Idea:

 Recursively split space
by planes

 Traverse resulting
tree to establish
rendering order
 Test eye location

w.r.t. each plane

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 17

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 18

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 19

Creating BSP Trees: Objects

 No bunnies were harmed in previous example
 But what if a splitting plane passes through

Splitting Objects

an object?
 Split the object; give half to each node

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 20

 Tree creation independent of viewpoint
 Preprocessing step

Traversing BSP Trees

 Tree traversal uses viewpoint
 Runtime, happens for many different

viewpoints

BSP Trees : Viewpoint A

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 21

BSP Trees : Viewpoint A

F N

F

NN

BSP Trees : Viewpoint A

F
N

F NF

FN

 decide independently at
each tree vertex

 not just left or right child!

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 22

BSP Trees : Viewpoint A

F N

F

N

NF

FN

BSP Trees : Viewpoint A

F N

F

N

NF

FN

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 23

BSP Trees : Viewpoint A

F N

FN
F

N

NF

1

1

BSP Trees : Viewpoint A

F
N

F N
N

FN

FN NF

1

2

1 2

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 24

BSP Trees : Viewpoint A

F

F N
N

FN

FN NF

1

2

N F 1 2

BSP Trees : Viewpoint A

F

F N
N

FN

FN NF

1

2

N F 1 2

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 25

BSP Trees : Viewpoint A

F
3

F N
N

FN

FN NF

1

2

N F 1 2

3

BSP Trees : Viewpoint A

3 F
N

F N

FN

FN NF

1

2

4

N

N F 1 2

34

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 26

BSP Trees : Viewpoint A

3 F
N

F N

FN

FN NF

1

2

4 5
N

N F 1 2

34

5

BSP Trees : Viewpoint A

3
F N

FN

FN NF

1

2

4 5

6
7

8
FN

FN

N F 1 2

34

5

6

78

96
9

FN

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 27

 Each plane divides world into near and far
 For given viewpoint, decide which side is near

d hi h i f

Traversing BSP Trees

and which is far
 Check which side of plane viewpoint is on

independently for each tree vertex
 Tree traversal differs depending on viewpoint!

 Recursive algorithm
 Recurse on far side Recurse on far side
 Draw object
 Recurse on near side

renderBSPrenderBSP((BSPtreeBSPtree *T)*T)
BSPtreeBSPtree *near *far;*near *far;

Traversing BSP Trees

BSPtreeBSPtree *near, *far;*near, *far;
if (eye on left side of Tif (eye on left side of T-->plane)>plane)

near = Tnear = T-->left; far = T>left; far = T-->right;>right;
else else

near = Tnear = T-->right; far = T>right; far = T-->left;>left;
renderBSPrenderBSP(far);(far);
if (T is a leaf node)if (T is a leaf node)if (T is a leaf node)if (T is a leaf node)

renderObjectrenderObject(T)(T)
renderBSPrenderBSP(near);(near);

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 28

BSP Trees : Viewpoint B

N F

F

N
F

N

F N

FNF N

FNN F

BSP Trees : Viewpoint B

7
N F

F

N
F

N 1

F N

FNF N

6

2

4

5

7

9

8

FN

34

2N F5

7

891 3

6

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 29

 Split along the plane defined by any polygon
from scene

f

BSP Tree Traversal: Polygons

 Classify all polygons into positive or negative
half-space of the plane
 If a polygon intersects plane, split polygon

into two and classify them both
 Recurse down the negative half-space
 Recurse down the positive half-space

 Useful demo:
 http://symbolcraft.com/graphics/bsp

BSP Demo

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 30

 Pros:
 Simple, elegant scheme

Summary: BSP Trees

 Correct version of painter’s algorithm back-to-front
rendering approach

 Still very popular for video games
 Cons:

 Slow(ish) to construct tree: O(n log n) to split, sort
 Splitting increases polygon count: O(n2) worst-case
 Computationally intense preprocessing stage

restricts algorithm to static scenes

 Bounding Volumes:
 Find simple object completely enclosing

li t d bj t

Spatial Subdivision Data Structures

complicated objects
 Boxes, spheres

 Hierarchically combine into larger bounding
volumes

 Spatial subdivision data structure:
P titi th h l i t ll Partition the whole space into cells
 Grids, octrees, (BSP trees)

 Simplifies and accelerates traversal
 Performance less dependent on order in which

objects are inserted

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 31

 So far:
 All lights were either point-shaped or directional

Soft Shadows: Area Light Sources

 Both for ray-tracing and the rendering pipeline
 Thus, at every point, we only need to compute

lighting formula and shadowing for ONEONE
direction per light

 In reality:
All li ht h fi it All lights have a finite area

 Instead of just dealing with one direction, we
now have to integrateintegrate over all directions that go
to the light source

 Area lights produce soft shadows:
 In 2D:

Area Light Sources

Area lightArea light

Occluding surfaceOccluding surface

Receiving surfaceReceiving surface

UmbraUmbra
(core shadow)(core shadow)

PenumbraPenumbra
(partial shadow)(partial shadow)

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 32

 Point lights:
 Only one light direction:

Area Light Sources

 V is visibility of light (0
or 1)

Ireflected V Ilight

Point lightPoint light

 is lighting
model (e.g.
diffuse or Phong)

 Area Lights:
 Infinitely many light rays

Are Light Sources

Area lightArea light
 Need to integrate

over all of them:

Lighting model

Ireflected () V () Ilight () d
light
directions

Area lightArea light

 Lighting model
visibility and
light intensity
can now be different
for every ray!

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 33

 Rewrite the integration
 Instead of integrating over directions

Integrating over Light Source

integrate over points on the light source

Ireflected (q)
(p q) V (p q)

| p q |2
 Ilight (p) ds dt

s,t

Ireflected () V () Ilight () d
light
directions

where: q point on reflecting surface & p= F(s,t)
point on the area light
 We are integrating over p
 Denominator: quadratic falloff!

s,t

 Problem:
 Except for the simplest of scenes, either

i t l i t l bl l ti llt l bl l ti ll !

Integration

integral is not solvable analyticallynot solvable analytically!
 This is mostly due to the visibility term, which

could be arbitrarily complex depending on the
scene

 So:
Use numerical integration Use numerical integration

 Effectively: approximate the light with a whole
number of point lights

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 34

 Regular grid of point lights
 Problem:

ill 4 h d

Numerical Integration

Area lightArea light

will see 4 hard
shadows rather than
as soft shadow

 Need LOTS of points
to avoid this problem

 Better:
 RandomlyRandomly choose

th i t

Monte Carlo Integration

Area lightArea lightthe points
 Use different points on

light for computing the
lighting in different points
on reflecting surface

Area lightArea light

 This produces
random noise

 Visually preferable to
structured artifacts

Computer GraphicsComputer Graphics Ray Tracing

Copyright 2012, Alla Sheffer, UBC Page 35

Monte Carlo Integration

one shadow ray

lots of shadow rays

 Note:
 This approach of approximating lighting

i t l ith d l h

Monte Carlo Integration

integrals with sums over randomly chosen
points is much more flexible than this!

 In particular, it can be used for global
illumination
 Light bouncing off multiple surfaces before

hitting the eyehitting the eye

