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Ch t 11Chapter 11

Ray-Tracing

 Basic shading (rendering pipeline) = local 
illumination model

bj i i

Global Illumination Models

 No object interaction
 Global illumination models require more 

sophisticated, computation-intensive algorithms
 Ray Tracing
 Global Illumination/Radiosity

 Ray-tracing
 Usually offline (e.g. movies etc.) 

 research on making real-time
 Flexible – can incorporate lots of phenomena
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Ray-Tracing Algorithm
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 Mirror effects
 Perfect specular reflection
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 Interface between 
transparent object and 
surrounding medium

Refraction

n

surrounding medium
 E.g. glass/air boundary

 1

 2

2112 sinsin  cc 

 Light ray breaks (changes 
direction) based on 
refractive indices c1, c2

Snell’s Law

Basic Ray-Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)obj :  FirstIntersection(r,scene)
if (no obj)  return BackgroundColor;
else begin

if ( Reflect(obj) ) then
reflect_color := RayTrace(ReflectRay(r,obj));

else 
reflect_color := Black;

if ( Transparent(obj) ) then
f t l R T (R f tR ( bj))refract_color := RayTrace(RefractRay(r,obj));

else 
refract_color := Black;

return Shade(reflect_color,refract_color,obj);
end;
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 ReflectRay(r,obj) – computes reflected ray 
(use obj normal at intersection)

Sub-Routines

 RefractRay(r,obj) - computes refracted ray 
 Note: ray is inside  obj

 Shade(reflect color,refract color,obj) –S ade( e ect_co o , e act_co o ,obj)
compute illumination given three components 

 Algorithm above has a BUG….

More About Ray-Tracing

 Does not terminate

 Termination Criteria
 No intersection
 Contribution of secondary ray attenuated Contribution of secondary ray attenuated 

below threshold – each reflection/refraction 
attenuates ray

 Maximal depth is reached
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 Trace ray from each ray-object intersection 
point to light sources

If h i bj i b

Simulating Shadows

 If the ray intersects an object in between 
point is shadowed from the light source

shadow = RayTrace(LightRay(obj,r,light));

S ( f f )return Shade(shadow,reflect_color,refract_color,obj);

Ray-Tracing With Shadows

Image Plane
Light
SourceEye

Reflected
Ray

Refracted
Ray

rayshow

Ray images
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Geometric Model/View
Lighting Perspective

Clipping

Geometry ProcessingGeometry Processing

Replaces Rendering Pipeline!!!

Content
/

Transform. Lighting p
Transform. Clipping

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

 Generation of rays
 Intersection of rays with geometric primitives

Ray-Tracing: Practicalities

 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space 
partitioningp g
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 Camera Coordinate System
 Origin: C (camera position)

Ray-Tracing: Generation of Rays

vv

 Viewing direction: w
 Up vector: v
 u direction: u= wv

 Note:
 Corresponds to viewing

ww

xx
CC

p g
transformation in rendering pipeline!

 See gluLookAt…

 Other parameters:
 Distance to image plane: d

Ray-Tracing: Generation of Rays

vv

 Image resolution (in pixels): x, h

 Left, right, top, bottom boundaries
in image plane: l, r, t, b

 Then:
 Lower left corner of image: vbulwdCO 

ww

uu
CC

 Pixel at position i, j (i=0..x-1, j=0..h-1):
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v
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 Ray in 3D Space:

Ray-Tracing: Generation of Rays

where t= 0…
jijiji tCCPtCt ,,, )()(R v

 Generation of rays
 Intersection of rays with geometric 

Ray-Tracing: Practicalities

primitives
 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of spaceE.g. use BSP trees or other types of space 
partitioning
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 Kernel of ray-tracing  must be extremely 
efficient

ll l l f

Ray-Object Intersections

 Usually involves solving a set of equations
 Using implicit formulas for primitives

Example: Ray-Sphere intersection

ray: x t p v t y t p v t z t p v tx x y y z z( ) , ( ) , ( )      v
2 2 2(unit) sphere:

quadratic equation in t : p
x y z2 2 2 1  

0 1

2

1

2 2 2

2 2 2 2

2 2 2

      

     

   

( ) ( ) ( )

( ) ( )

( )

p v t p v t p v t

t v v v t p v p v p v

p p p

x x y y z z

x y z x x y y z z

x y z

 Other Primitives:
 Implicit functions:

Ray Intersections

 Spheres at arbitrary positions
 Same thing

 Conic sections (hyperboloids, ellipsoids, 
paraboloids, cones, cylinders)
 Same thing (all are quadratic functions!)

 Higher order functions (e.g. tori and other g ( g
quartic functions)
 In principle the same
 But root-finding difficult
 Net to resolve to numerical methods
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 Other Primitives (cont)
 Polygons:

Ray Intersections

 First intersect ray with plane
 linear implicit function

 Then test whether point is inside or outside of 
polygon (2D test)

 For convex polygons
 Suffices to test whether point in on the right side of p g

every boundary edge
 Similar to computation of outcodes in line clipping

 Generation of rays
 Intersection of rays with geometric primitives

Ray-Tracing: Practicalities

 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space 
partitioningp g
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 Note: rays replace perspective transformation
 Geometric Transformations:

Ray-Tracing: Transformations

 Similar goal as in rendering pipeline:
 Modeling scenes convenient using different 

coordinate systems for individual objects
 Problem:

 Not all object representations are easy to 
transformtransform
 This problem is fixed in rendering pipeline by 

restriction to polygons (affine invariance!)

 Ray Transformation:
 For intersection test, it is only important that ray 

i i di t t bj t

Ray-Tracing: Transformations

is in same coordinate system as object 
representation

 Transform all rays into object coordinates
 Transform camera point and ray direction by 

inverse of model/view matrix
 Shading has to be done in world coordinates Shading has to be done in world coordinates 

(where light sources are given)
 Transform object space intersection point to world 

coordinates
 Thus have to keep both world and object-space ray
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 Generation of rays
 Intersection of rays with geometric primitives

Ray-Tracing: Practicalities

 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection tests

 E.g. use BSP trees or other types of space 
partitioningp g

 Light sources:
 For the moment: point and directional lights

Ray-Tracing: Local Lighting

 More complex lights are possible
 Area lights
 Global illumination

 Other objects in the scene reflect light
 Everything is a light source!
 Talk about this on Mondayy
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 Local surface information (normal…)
 For implicit surfaces F(x,y,z)=0: normal n(x,y,z)

b il t d t i t ti

Ray-Tracing: Local Lighting

can be easily computed at every intersection 
point using the gradient

E l
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Needs to be normalized!Needs to be normalized!

 Local surface information
 Alternatively: can interpolate per-vertex 

i f ti f t i l / h i

Ray-Tracing: Local Lighting

information for triangles/meshes as in 
rendering pipeline
 Phong shading!
 Same as discussed for rendering pipeline

 Difference to rendering pipeline:
Have to compute Barycentric coordinates for Have to compute Barycentric coordinates for 
every intersection point (e.g plane equation for 
triangles)
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 Generation of rays
 Intersection of rays with geometric primitives

Ray-Tracing: Practicalities

 Geometric transformations
 Lighting and shading
 Speed: Reducing number of intersection 

tests

 Basic algorithm simple but VERY expensive
 Optimize…

Optimized Ray-Tracing

 Reduce number of rays traced
 Reduce number of ray-object intersection 

calculations
 Methods

 Bounding Boxes
raytracer

g
 Spatial Subdivision

 Visibility & Intersection
 Tree Pruning
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 Data Structures
 Goal: reduce number of intersection tests per 

Ray Tracing

ray
 Lots of different approaches:

 (Hierarchical) bounding volumes
 Hierarchical space subdivision

 Octree, k-D tree, BSP tree

 Idea:
 Rather than test every ray against a potentially 

l bj t ( t i l h) d

Bounding Volumes

very complex object (e.g. triangle mesh), do a 
quick conservative test first which eliminates most 
rays
 Surround complex object by simple, easy to test 

geometry (typically sphere or axis-aligned box)
 Reduce false positives: make bounding volume as tight as 

possible!
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 Extension of previous idea:
 Use bounding volumes for groups of objects

Hierarchical Bounding Volumes

 For any plane (3D) objects on the same side of 
plane as viewer CANNOT be occluded by objects 
on other side

BSP Trees: Idea

on other side
 Idea:

 Recursively split space                                     
by planes

 Traverse resulting                                          
tree to establish                                    
rendering order
 Test eye location                                        

w.r.t. each plane 
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Creating BSP Trees: Objects

Creating BSP Trees: Objects
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Creating BSP Trees: Objects

Creating BSP Trees: Objects
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Creating BSP Trees: Objects

 No bunnies were harmed in previous example
 But what if a splitting plane passes through 

Splitting Objects

an object?
 Split the object; give half to each node
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 Tree creation independent of viewpoint
 Preprocessing step

Traversing BSP Trees

 Tree traversal uses viewpoint
 Runtime, happens for many different 

viewpoints

BSP Trees : Viewpoint A
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BSP Trees : Viewpoint A

F N

F

NN

BSP Trees : Viewpoint A

F
N

F NF

FN

 decide independently at
each tree vertex

 not just left or right child!
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BSP Trees : Viewpoint A

F N

F

N

NF

FN

BSP Trees : Viewpoint A

F N

F

N

NF

FN
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BSP Trees : Viewpoint A
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BSP Trees : Viewpoint A
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BSP Trees : Viewpoint A
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BSP Trees : Viewpoint A
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BSP Trees : Viewpoint A
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 Each plane divides world into near and far
 For given viewpoint, decide which side is near 

d hi h i f

Traversing BSP Trees

and which is far
 Check which side of plane viewpoint is on 

independently for each tree vertex
 Tree traversal differs depending on viewpoint!

 Recursive algorithm
 Recurse on far side Recurse on far side
 Draw object
 Recurse on near side

renderBSPrenderBSP((BSPtreeBSPtree *T)*T)
BSPtreeBSPtree *near *far;*near *far;

Traversing BSP Trees

BSPtreeBSPtree *near, *far;*near, *far;
if (eye on left side of Tif (eye on left side of T-->plane)>plane)

near = Tnear = T-->left; far = T>left; far = T-->right;>right;
else else 

near = Tnear = T-->right; far = T>right; far = T-->left;>left;
renderBSPrenderBSP(far);(far);
if (T is a leaf node)if (T is a leaf node)if (T is a leaf node)if (T is a leaf node)

renderObjectrenderObject(T)(T)
renderBSPrenderBSP(near);(near);
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BSP Trees : Viewpoint B
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BSP Trees : Viewpoint B
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 Split along the plane defined by any polygon 
from scene

f

BSP Tree Traversal: Polygons

 Classify all polygons into positive or negative 
half-space of the plane
 If a polygon intersects plane, split polygon 

into two and classify them both
 Recurse down the negative half-space
 Recurse down the positive half-space

 Useful demo:
 http://symbolcraft.com/graphics/bsp

BSP Demo
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 Pros:
 Simple, elegant scheme

Summary: BSP Trees

 Correct version of painter’s algorithm back-to-front 
rendering approach

 Still very popular for video games
 Cons:

 Slow(ish) to construct tree: O(n log n) to split, sort
 Splitting increases polygon count: O(n2) worst-case 
 Computationally intense preprocessing stage 

restricts algorithm to static scenes

 Bounding Volumes:
 Find simple object completely enclosing 

li t d bj t

Spatial Subdivision Data Structures

complicated objects
 Boxes, spheres

 Hierarchically combine into larger bounding 
volumes

 Spatial subdivision data structure:
P titi th h l i t ll Partition the whole space into cells
 Grids, octrees, (BSP trees)

 Simplifies and accelerates traversal
 Performance less dependent on order in which 

objects are inserted
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 So far:
 All lights were either point-shaped or directional

Soft Shadows: Area Light Sources

 Both for ray-tracing and the rendering pipeline
 Thus, at every point, we only need to compute 

lighting formula and shadowing for ONEONE
direction per light

 In reality:
All li ht h fi it All lights have a finite area

 Instead of just dealing with one direction, we 
now have to integrateintegrate over all directions that go 
to the light source

 Area lights produce soft shadows:
 In 2D:

Area Light Sources

Area lightArea light

Occluding surfaceOccluding surface

Receiving surfaceReceiving surface

UmbraUmbra
(core shadow)(core shadow)

PenumbraPenumbra
(partial shadow)(partial shadow)
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 Point lights:
 Only one light direction:

Area Light Sources

 V is visibility of light (0 
or 1)

Ireflected   V  Ilight

Point lightPoint light

  is lighting
model (e.g.
diffuse or Phong)

 Area Lights:
 Infinitely many light rays

Are Light Sources

Area lightArea light
 Need to integrate

over all of them:

Lighting model

Ireflected  () V ()  Ilight ()  d
light
directions



Area lightArea light

 Lighting model
visibility and
light intensity
can now be different
for every ray!
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 Rewrite the integration
 Instead of integrating over directions

Integrating over Light Source

integrate over points on the light source

Ireflected (q) 
(p q) V (p q)

| p q |2
 Ilight (p)  ds  dt

s,t



Ireflected  () V ()  Ilight ()  d
light
directions



where: q point on reflecting surface & p= F(s,t) 
point on the area light
 We are integrating over p
 Denominator: quadratic falloff!

s,t

 Problem:
 Except for the simplest of scenes, either 

i t l i t l bl l ti llt l bl l ti ll !

Integration

integral is not solvable analyticallynot solvable analytically!
 This is mostly due to the visibility term, which 

could be arbitrarily complex depending on the 
scene

 So:
Use numerical integration Use numerical integration

 Effectively: approximate the light with a whole 
number of point lights
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 Regular grid of point lights
 Problem:

ill 4 h d

Numerical Integration

Area lightArea light

will see 4 hard
shadows rather than
as soft shadow

 Need LOTS of points
to avoid this problem

 Better:
 RandomlyRandomly choose

th i t

Monte Carlo Integration

Area lightArea lightthe points
 Use different points on

light for computing the
lighting in different points
on reflecting surface

Area lightArea light

 This produces
random noise

 Visually preferable to
structured artifacts
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Monte Carlo Integration

one shadow ray

lots of shadow rays

 Note:
 This approach of approximating lighting 

i t l ith d l h

Monte Carlo Integration

integrals with sums over randomly chosen 
points is much more flexible than this!

 In particular, it can be used for global 
illumination
 Light bouncing off multiple surfaces before 

hitting the eyehitting the eye


