
Computer GraphicsComputer Graphics Hidden Surface Removal

1

Copyright Alla Sheffer

UBC 2012

Page 1

Chapter 10

Hidden Surface Removal/
Depth Test

A2 grade distribution

25

Frequency

5

10

15

20

Frequency

0
0 - 50 51 -60 61-70 71-80 81-90 91-100 101 -

More

Computer GraphicsComputer Graphics Hidden Surface Removal

2

Copyright Alla Sheffer

UBC 2012

Page 2

Geometric Model/View
Lighting Perspective

Clipping

Geometry ProcessingGeometry Processing

Rendering Pipeline

Content
/

Transform. Lighting p
Transform. Clipping

Scan
Conversion

Depth
Test

Texturing Blending
Frame-
buffer

RasterizationRasterization Fragment ProcessingFragment Processing

 For most interesting scenes, some polygons
overlap

Occlusion

 To render the correct image, we need to
determine which polygons occlude which

Computer GraphicsComputer Graphics Hidden Surface Removal

3

Copyright Alla Sheffer

UBC 2012

Page 3

 Simple: render the polygons from back to
front, “painting over” previous polygons

Painter’s Algorithm

 Draw cyan, then green, then red
 Will this work in general?

 Intersecting polygons present a problem
 Even non-intersecting polygons can form a

Painter’s Algorithm: Problems

cycle with no valid visibility order:

Computer GraphicsComputer Graphics Hidden Surface Removal

4

Copyright Alla Sheffer

UBC 2012

Page 4

 Object Space Methods:
 Work in 3D before scan conversion

Hidden Surface Removal

 E.g. Painter’s algorithm
 Usually independent of resolution

 Important to maintain independence of output
device (screen/printer etc.)

 Image Space Methods:
W k i l/ f b i f Work on per-pixel/per fragment basis after
scan conversion

 Z-Buffer/Depth Buffer
 Much faster, but resolution dependent

 What happens if multiple primitives occupy
the same pixel on the screen?

The Z-Buffer Algorithm

 Which is allowed to paint the pixel?

Computer GraphicsComputer Graphics Hidden Surface Removal

5

Copyright Alla Sheffer

UBC 2012

Page 5

 Idea: retain depth after projection transform
 Each vertex maintains z coordinate

The Z-Buffer Algorithm

 Relative to eye point
 Can do this with canonical viewing volumes

 Augment color framebuffer with Z-buffer
 Also called depth buffer

The Z-Buffer Algorithm

 Stores z value at each pixel
 At frame beginning, initialize all pixel depths to
 (depth = far)

 When scan converting: interpolate depth (z)
across polygon

 Check z-buffer before storing pixel color in
framebuffer and storing depth in z-buffer
 don’t write pixel if its z value is more distant

than the z value already stored there

Computer GraphicsComputer Graphics Hidden Surface Removal

6

Copyright Alla Sheffer

UBC 2012

Page 6

 Store (r,g,b,z) for each pixel
 typically 8+8+8+24 bits, can be more

Z-Buffer

for all for all i,ji,j {{
Depth[Depth[i,ji,j] = MAX_DEPTH] = MAX_DEPTH
Image[Image[i,ji,j] = BACKGROUND_COLOUR] = BACKGROUND_COLOUR
} }
for all polygons P {for all polygons P {
for all pixels in P {for all pixels in P {
if (if (Z pixelZ pixel < Depth[< Depth[i ji j]) {]) {if (if (Z_pixelZ_pixel < Depth[< Depth[i,ji,j]) {]) {
Image[Image[i,ji,j] =] = C_pixelC_pixel
Depth[Depth[i,ji,j] =] = Z_pixelZ_pixel

} }
} }

} }

 Use barycentric coordinates
 Interpolate z like other

t

Interpolating Z

parameters
 E.g. color
 Use on of three formulas shown

 Plane/edge walk/barycentric

Computer GraphicsComputer Graphics Hidden Surface Removal

7

Copyright Alla Sheffer

UBC 2012

Page 7

 History:
 Object space algorithms were proposed when

i

The Z-Buffer Algorithm (mid-70’s)

memory was expensive
 First 512x512 framebuffer was >$50,000!

 Radical new approach at the time
 The big idea:

 Resolve visibility independently at each pixel

 Reminder: projective transformation maps
eye-space z to generic z-range (NDC)
Simple example:

Depth Test Precision

 Simple example:

10100

00

0010

0001

1

z

y

x

baz

y

x

T

 Thus:

eye
z

b
a

eye
z

b
eye

za

NDC
z

Computer GraphicsComputer Graphics Hidden Surface Removal

8

Copyright Alla Sheffer

UBC 2012

Page 8

 Therefore, depth-buffer essentially stores 1/z,
rather than z!
Issue with integer depth buffers

Depth Test Precision

 Issue with integer depth buffers
 High precision for near objects
 Low precision for far objects

zzNDCNDC

--zzeyeeye--nn --ff

 Low precision can lead to depth fighting for far
objects
 Two different depths in eye space get mapped to

Depth Test Precision

 Two different depths in eye space get mapped to
same depth in framebuffer

 Which object “wins” depends on drawing order
and scan-conversion

 Gets worse for larger ratios f:n
 Rule of thumb: f:n < 1000 for 24 bit depth buffer

 With 16 bits cannot discern cm differences in With 16 bits cannot discern cm differences in
objects at 1 km distance

Computer GraphicsComputer Graphics Hidden Surface Removal

9

Copyright Alla Sheffer

UBC 2012

Page 9

 How much memory does the Z-buffer use?
 Does the image rendered depend on the

drawing order?

Z-Buffer Algorithm Questions

drawing order?
 Does the time to render the image depend on

the drawing order?
 How does Z-buffer load scale with visible

polygons? with framebuffer resolution?

 Simple!!!
 Easy to implement in hardware

Z-Buffer Pros

 Hardware support in all graphics cards today
 Polygons can be processed in arbitrary order
 Easily handles polygon interpenetration

Computer GraphicsComputer Graphics Hidden Surface Removal

10

Copyright Alla Sheffer

UBC 2012

Page 10

 Poor for scenes with high depth complexity
 Need to render all polygons, even if

most are invisible

Z-Buffer Cons

most are invisible

eyeeye

 Shared edges/overlaps handled inconsistently
 Ordering dependent

 Requires “lots” of memory
 (e.g. 1280x1024x32 bits)

Z-Buffer Cons

 Requires fast memory
 Read-Modify-Write in inner loop

 Hard to simulate transparent polygons
 We throw away color of polygons behind

closest one
 Works if polygons ordered back-to-front

 Extra work throws away much of the speed
advantage

Computer GraphicsComputer Graphics Hidden Surface Removal

11

Copyright Alla Sheffer

UBC 2012

Page 11

 Determine visibility on object or polygon level
 Using camera coordinates

Object Space Algorithms

 Resolution independent
 Explicitly compute visible portions of polygons

 Early in pipeline
 After clipping

 Requires depth-sortingRequires depth sorting
 Painter’s algorithm
 BSP trees

 For any plane (3D) objects on the same side of
plane as viewer CANNOT be occluded by objects
on other side

BSP Trees: Idea

on other side
 Idea:

 Recursively split space
by planes

 Traverse resulting
tree to establish
rendering order
 Test eye location

w.r.t. each plane

Computer GraphicsComputer Graphics Hidden Surface Removal

12

Copyright Alla Sheffer

UBC 2012

Page 12

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Computer GraphicsComputer Graphics Hidden Surface Removal

13

Copyright Alla Sheffer

UBC 2012

Page 13

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Computer GraphicsComputer Graphics Hidden Surface Removal

14

Copyright Alla Sheffer

UBC 2012

Page 14

Creating BSP Trees: Objects

 No bunnies were harmed in previous example
 But what if a splitting plane passes through

Splitting Objects

an object?
 Split the object; give half to each node

Computer GraphicsComputer Graphics Hidden Surface Removal

15

Copyright Alla Sheffer

UBC 2012

Page 15

 Tree creation independent of viewpoint
 Preprocessing step

Traversing BSP Trees

 Tree traversal uses viewpoint
 Runtime, happens for many different

viewpoints

BSP Trees : Viewpoint A

Computer GraphicsComputer Graphics Hidden Surface Removal

16

Copyright Alla Sheffer

UBC 2012

Page 16

BSP Trees : Viewpoint A

F N

F

NN

BSP Trees : Viewpoint A

F
N

F NF

FN

 decide independently at
each tree vertex

 not just left or right child!

Computer GraphicsComputer Graphics Hidden Surface Removal

17

Copyright Alla Sheffer

UBC 2012

Page 17

BSP Trees : Viewpoint A

F N

F

N

NF

FN

BSP Trees : Viewpoint A

F N

F

N

NF

FN

Computer GraphicsComputer Graphics Hidden Surface Removal

18

Copyright Alla Sheffer

UBC 2012

Page 18

BSP Trees : Viewpoint A

F N

FN
F

N

NF

1

1

BSP Trees : Viewpoint A

F
N

F N
N

FN

FN NF

1

2

1 2

Computer GraphicsComputer Graphics Hidden Surface Removal

19

Copyright Alla Sheffer

UBC 2012

Page 19

BSP Trees : Viewpoint A

F

F N
N

FN

FN NF

1

2

N F 1 2

BSP Trees : Viewpoint A

F

F N
N

FN

FN NF

1

2

N F 1 2

Computer GraphicsComputer Graphics Hidden Surface Removal

20

Copyright Alla Sheffer

UBC 2012

Page 20

BSP Trees : Viewpoint A

F
3

F N
N

FN

FN NF

1

2

N F 1 2

3

BSP Trees : Viewpoint A

3 F
N

F N

FN

FN NF

1

2

4

N

N F 1 2

34

Computer GraphicsComputer Graphics Hidden Surface Removal

21

Copyright Alla Sheffer

UBC 2012

Page 21

BSP Trees : Viewpoint A

3 F
N

F N

FN

FN NF

1

2

4 5
N

N F 1 2

34

5

BSP Trees : Viewpoint A

3
F N

FN

FN NF

1

2

4 5

6
7

8
FN

FN

N F 1 2

34

5

6

78

96
9

FN

Computer GraphicsComputer Graphics Hidden Surface Removal

22

Copyright Alla Sheffer

UBC 2012

Page 22

 Each plane divides world into near and far
 For given viewpoint, decide which side is near

d hi h i f

Traversing BSP Trees

and which is far
 Check which side of plane viewpoint is on

independently for each tree vertex
 Tree traversal differs depending on viewpoint!

 Recursive algorithm
 Recurse on far side Recurse on far side
 Draw object
 Recurse on near side

renderBSPrenderBSP((BSPtreeBSPtree *T)*T)
BSPtreeBSPtree *near *far;*near *far;

Traversing BSP Trees

BSPtreeBSPtree *near, *far;*near, *far;
if (eye on left side of Tif (eye on left side of T-->plane)>plane)

near = Tnear = T-->left; far = T>left; far = T-->right;>right;
else else

near = Tnear = T-->right; far = T>right; far = T-->left;>left;
renderBSPrenderBSP(far);(far);
if (T is a leaf node)if (T is a leaf node)if (T is a leaf node)if (T is a leaf node)

renderObjectrenderObject(T)(T)
renderBSPrenderBSP(near);(near);

Computer GraphicsComputer Graphics Hidden Surface Removal

23

Copyright Alla Sheffer

UBC 2012

Page 23

BSP Trees : Viewpoint B

N F

F

N
F

N

F N

FNF N

FNN F

BSP Trees : Viewpoint B

7
N F

F

N
F

N 1

F N

FNF N

6

2

4

5

7

9

8

FN

34

2N F5

7

891 3

6

Computer GraphicsComputer Graphics Hidden Surface Removal

24

Copyright Alla Sheffer

UBC 2012

Page 24

 Split along the plane defined by any polygon
from scene

f

BSP Tree Traversal: Polygons

 Classify all polygons into positive or negative
half-space of the plane
 If a polygon intersects plane, split polygon

into two and classify them both
 Recurse down the negative half-space
 Recurse down the positive half-space

 Useful demo:
 http://symbolcraft.com/graphics/bsp

BSP Demo

Computer GraphicsComputer Graphics Hidden Surface Removal

25

Copyright Alla Sheffer

UBC 2012

Page 25

 Pros:
 Simple, elegant scheme

F i l i

Summary: BSP Trees

 Fast runtime evaluation

 Cons:
 Computationally intense preprocessing stage

 O(n log n) to split, sort
 Splitting increases polygon count: O(n2) worst-case

 Good for static scenes (where prep cost is amortized)
 Still very popular for video games
 Useful for tasks like RayTracing

 In closed polyhedron you
don’t see object “back”
f

Back Face Culling (object space)

n

n faces

 Assumption
 Normals of faces point out

from the object

V

Computer GraphicsComputer Graphics Hidden Surface Removal

26

Copyright Alla Sheffer

UBC 2012

Page 26

 Determine back & front faces using sign of
inner product nv

Back Face Culling

 In a convex object :
 Invisible back faces
 All front faces entirely visible solves hidden

surfaces problem

cosvnvnvnvnvn zzyyxx

 In non-convex object:
 Invisible back faces
 Front faces can be visible, invisible, or partially

visible

