
CPSC 314
Assignment 4: Ray Tracer

Due 4PM, Nov 30, 2012

In this assignment you will implement a simple raytracer that supports spheres, planes,
triangle meshes, and optionally other types of surfaces. The raytracer should cast primary
rays into the scene, which spawn shadow rays and secondary reflection/refraction rays. The
goal of the assignment is to experiment with advanced rendering tools and to get hands-on
experience with both lighting and geometry manipulation.

Extra credit points are available for extending your program to support additional fea-
tures.

Template: The template code is found in the main assignment directory. You will be
making additions to three of the template code files: object.cpp, raytracer.cpp, and
mesh.cpp. You do not need to make any changes to the other source files (though you can
if you wish when implementing optional extra features).

There are also two subdirectories, scenes and meshes. The scenes directory contains
scene descriptions in the .ray format, describing the following scene parameters: Dimensions,
Perspective, LookAt, Material, PushMatrix, PopMatrix, Translate, Rotate, Scale, Sphere,
Plane, Mesh, and PointLight. The comments in those files describe the format. A few
triangle meshes in OBJ format are provided in the meshes directory, and most of the scene
files depend on one or more of these.

Execution: The README contains instructions for compiling and running your raytracer.
The raytracer binary takes two optional arguments: the name of the scene description,
and the name of the output PPM image file. The defaults are scenes/basic.ray and
output.ppm. The output of the program is two image files, a color image and a black-and-
white depth map image that you might find useful for debugging. The name of the depth
map image file is filename depth.ppm, where filename.ppm is the specified output image
file.

Reference solution executables raytracer sol and raytracer sol.exe are provided for
comparison. Use them on the provided scenes to generate reference images.

NOTE: Rendering very complicated scenes with many primitives (eg: the provided teapot
mesh has thousands of triangles) can take a long time! Make sure that whenever possible you

1



CPSC 314 Assignment 4 Nov 9, 2012

test and debug on simple scenes that only take a few seconds to render, rather than minutes
or hours. One of the optional components of the assignment is to implement acceleration
algorithms to speed up rendering. The reference solution raytracer sol doesn’t use any
complicated acceleration structures, so rendering complex scenes like teapot.ray may take a
while.

Steps: As usual, your assignment consists of several mandatory components and a number
of optional ones. The mandatory components are as follows.

• 15 pts Implement the missing parts of Raytracer::render and Raytracer::trace

for basic ray casting for all pixels in the image, using the camera location and the
coordinates of each pixel. You can test this code by re-computing the pixel as the
intersection of the ray and the view plane and testing that you obtain the same coor-
dinates back.

• 10 pts Implement Sphere::localIntersect. Test your result by comparing the out-
put of your depth algorithm with the example solution’s results on the provided scenes.
You can also render the spheres using the diffuse coefficients provided.

• 10 pts Implement Plane::localIntersect and test in a similar way (note that as
you do new objects will appear).

• 10 pts Implement Mesh::intersectTriangle and test in a similar way. When triangle
intersection is working properly, you should be able to see full meshes appear in your
scenes.

• 20 pts Implement the missing part of Raytracer::shade that does a lighting cal-
culation to find the color at a point. You should calculate the ambient, diffuse, and
specular terms. Test your results by comparing to the ground truth ones.

• 10 pts Implement the shadow ray calculation in Raytracer::shade and update the
lighting computation accordingly.

• 10 pts Implement the secondary ray recursion for reflection in Raytracer::shade,
use the rayDepth recursion depth variable to stop the recursion process. (The default
used in the solution is 10.) Update the lighting computation at each step to account
for the secondary component.

The implementation so far gives you 85 points. To obtain the remaining 15 you should
implement one of the two options below.

• Implement Conic::localIntersect to enable intersections between the rays and gen-
eralized conical surfaces (http://en.wikipedia.org/wiki/Conical surface) . Note
that this requires detecting the bounding circles of the conics and accurately handling
those (to get finite cylinders/cones/ellipsoid parts).

Page 2 of 3



CPSC 314 Assignment 4 Nov 9, 2012

• Implement secondary ray recursion for refraction rays. Use the same recursion depth
variable rayDepth as for reflection to stop the recursion process. Update the lighting
computation at each step to account for the secondary component.

For those who want to further explore, up to 20 extra points will be given for implementing
both of the optional enhancements above and/or one of the following. To demonstrate your
add-ons, you should create additional input scene files.

• Texturing - use the provided Image class to import textures and access the texture
during ray-tracing to get a local diffuse color.

• Speed - consider speeding up your method using any of the space-partitioning methods
discussed in class. The template provides a timer which you can use to compare your
result to those of others and the ones in the solution.

• Gloss - use randomized direction estimation to account not only for specular but also
glossy surfaces.

The comments in the template code above each section where are you required to add code
contain the details of the specification. They also contain many hints. The recommended
order of implementation is exactly the order we list the items above.

Hand-in Instructions: You do not have to hand in any printed code. Create a
README.txt file that includes your name, student number, and login ID for yourself, and
any information you would like to pass on the marker. Create a folder called ”assn4” under
your ”cs314” directory and put all the source fies, your makefile, and your README.txt
file there. Do submit the images made by your program for the example scenes provided. If
you design extra-credit scenes, also submit the .ray file for them. Also include any images
that you used as texture maps. Do not use further sub-directories. The assignment should
be handed in with the exact command:

handin cs314 assn4

Page 3 of 3


