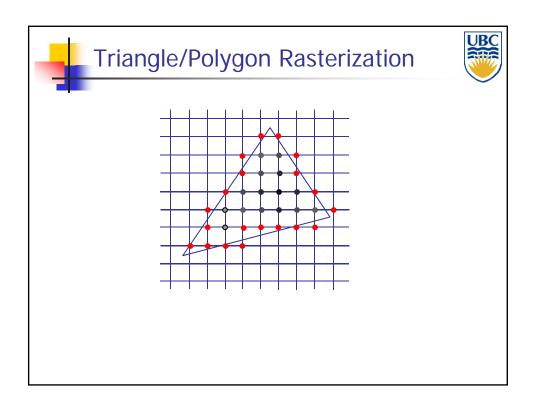
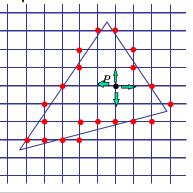


Scan Conversion- Polygons

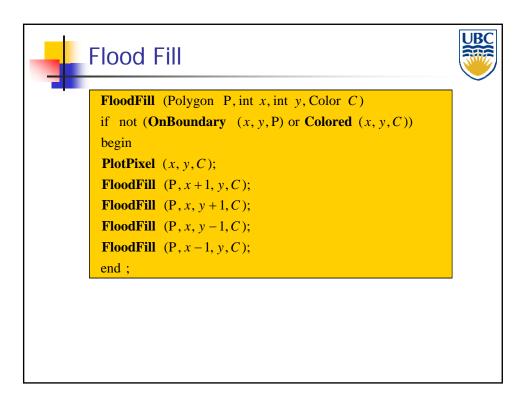


Flood Fill Algorithm

- Input
 - polygon P with rasterized edges
 - $P = (x,y) \in P$ point inside P
- Goal: Fill interior with specified color on graphics display

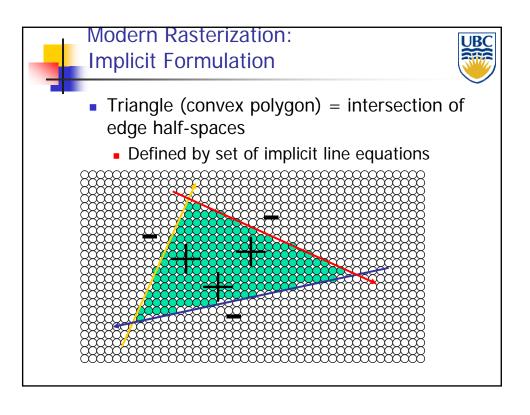


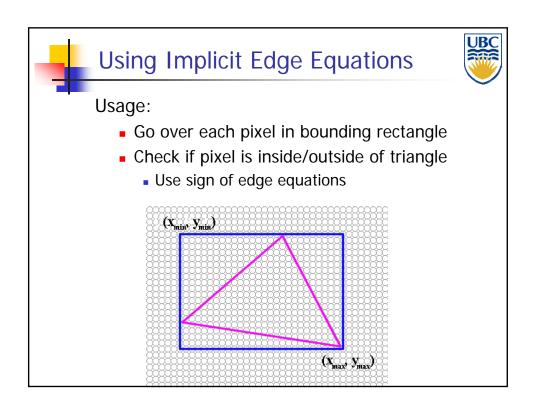
Scan Conversion- Polygons



Flood Fill - Drawbacks

- How do we find a point inside?
- Pixels visited up to 4 times to check if already set
- Need per-pixel flag indicating if set already
 - clear for every polygon!





Scan Conversion- Polygons

Computing Edge Equations

Implicit equation of a triangle edge:

$$L(x, y) = \frac{(y_e - y_s)}{(x_e - x_s)}(x - x_s) - (y - y_s) = 0$$

- see Bresenham algorithm
- L(x,y) positive on one side of edge, negative on the other
- Question:
 - What happens for vertical lines?

Edge Equations

Multiply with denominator

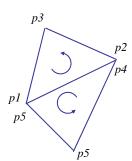
$$L(x,y) = (y_e - y_s)(x - x_s) - (y - y_s)(x_e - x_s) = 0$$

- Avoids singularity
- Works with vertical lines
- What about the sign?
 - Which side is in, which is out?

Scan Conversion- Polygons

Edge Equations

- Determining the sign
 - Which side is "in" and which is "out" depends on order of start/end vertices...
 - Convention: specify vertices in counterclockwise order



Edge Equations

- Counter-Clockwise Triangles
 - The equation L(x,y) as specified above is negative inside, positive outside
 - Flip sign:

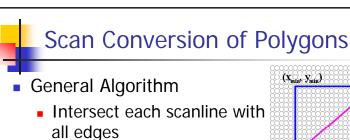
$$L(x,y) = -(y_e - y_s)(x - x_s) + (y - y_s)(x_e - x_s) = 0$$

- Clockwise triangles
 - Use original formula

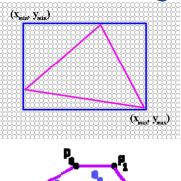
$$L(x,y) = (y_e - y_s)(x - x_s) - (y - y_s)(x_e - x_s) = 0$$

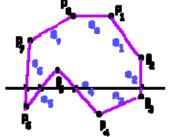
Scan Conversion- Polygons

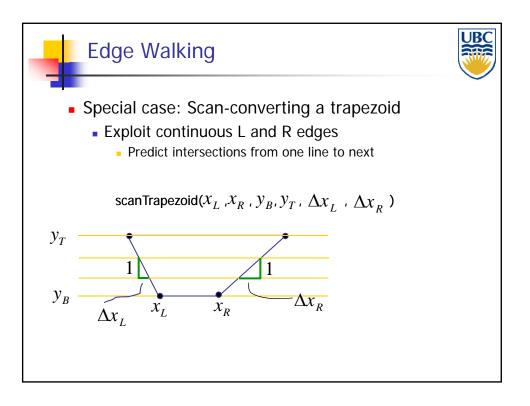
- Implicit formulation doesn't work for non-convex polygons
- Require per pixel, per edge computation
- Observation:
 - Straight line intersection
- with polygon = set of segments Alternative: algorithm based on scan-line/edge intersections
- Works for general polygons
 - Less per pixel computations

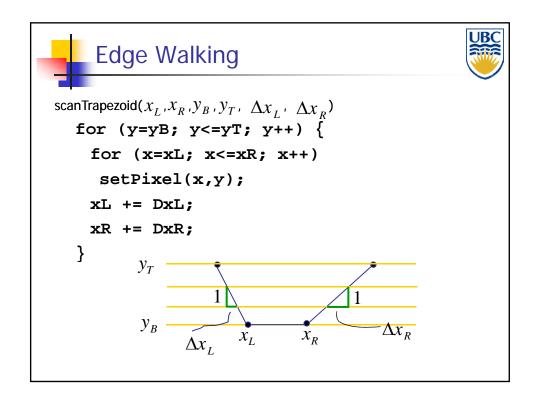


- Sort intersections in x
- Calculate parity to determine in/out
- Fill the 'in' pixels
- Efficiency improvement:
 - Exploit row-to-row coherence using "edge table"





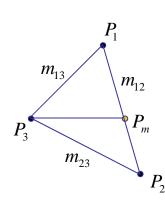


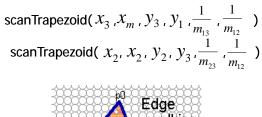


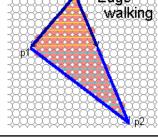
Scan Conversion- Polygons

Edge Walking Triangles

 Split triangles into two "trapezoids" with continuous left and right edges







Edge Walking Triangles

Issues

- Many applications have small triangles
 - Setup cost is non-trivial
- Clipping triangles produces non-triangles
 - Can be avoided through re-triangulation

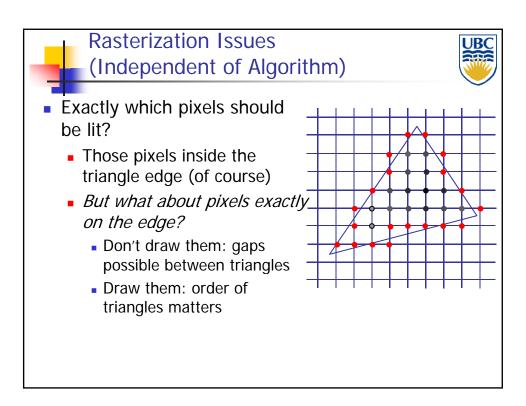
Scan Conversion- Polygons

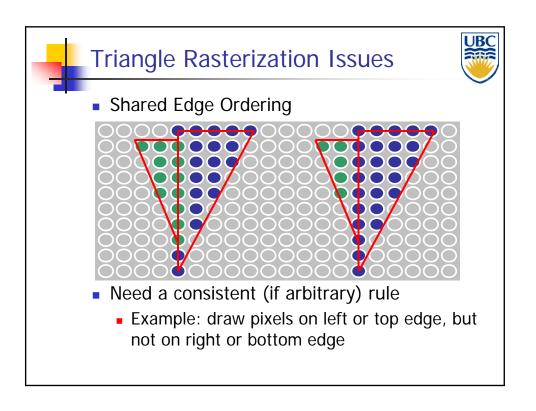
Discussion

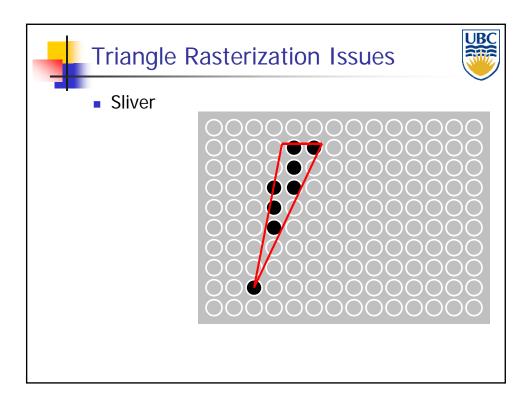
- Old hardware:
 - Use edge-walking algorithm
 - Scan-convert edges, then fill in scanlines
 - Compute interpolated values by interpolating along edges, then scanlines
 - Requires clipping of polygons against viewing volume
 - Faster if you have a few, large polygons
 - Possibly faster in software

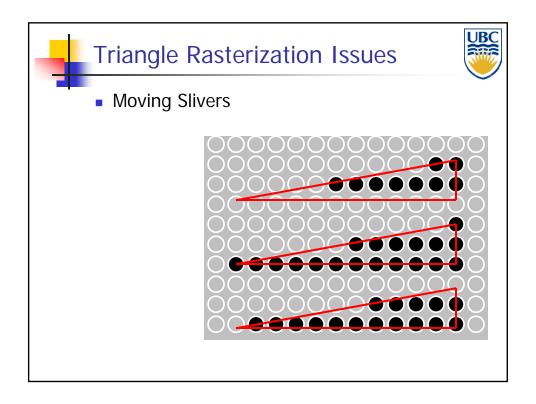
Discussion:

- Modern GPUs:
 - Use edge equations
 - Plus plane equations for attribute interpolation
 - No clipping of primitives required
 - Faster with many small triangles
- Additional advantage:
 - Can control the order in which pixels are processed
 - Allows for more memory-coherent traversal orders
 - E.g. tiles or space-filling curve rather than scanlines





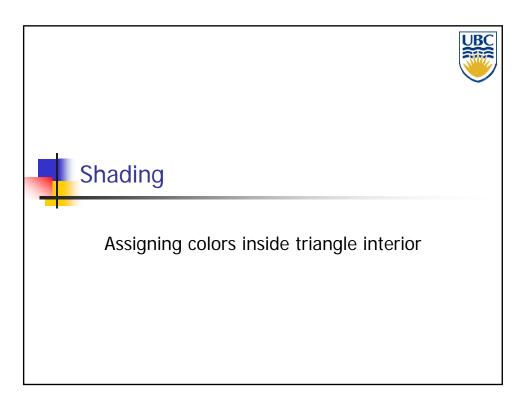




Scan Conversion- Polygons

Triangle Rasterization Issues

- These are ALIASING Problems
 - Problems associated with representing continuous functions (triangles) with finite resolution (pixels)
 - More on this problem when we talk about sampling...



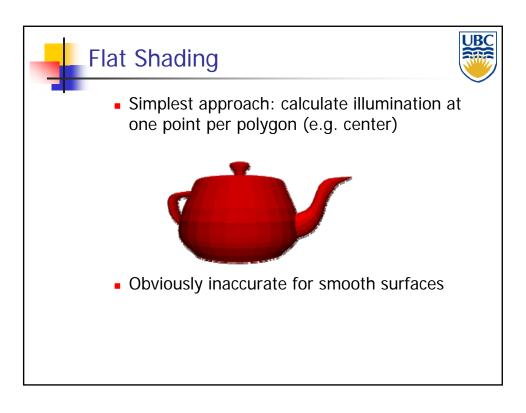
Scan Conversion- Polygons

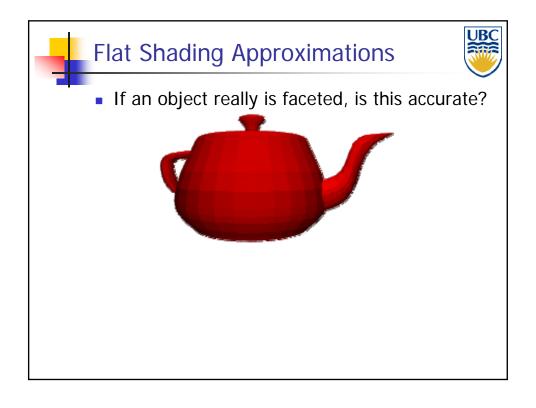
Shading

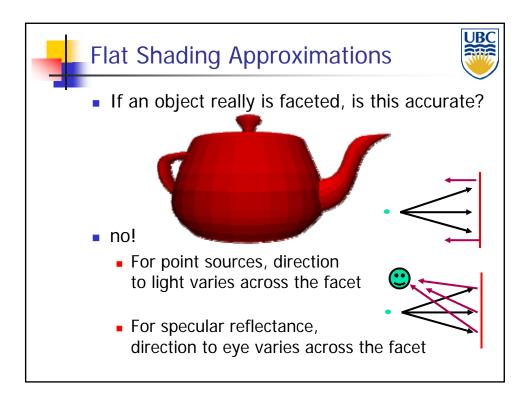
- Input to Scan Conversion:
 - Vertices of triangles (lines, quadrilaterals...)
 - Color (per vertex)
 - Specified with glColor
 - Or: computed with lighting
 - World-space normal (per vertex)
 - Left over from lighting stage
- Shading Task:
 - Determine color of every pixel in the triangle

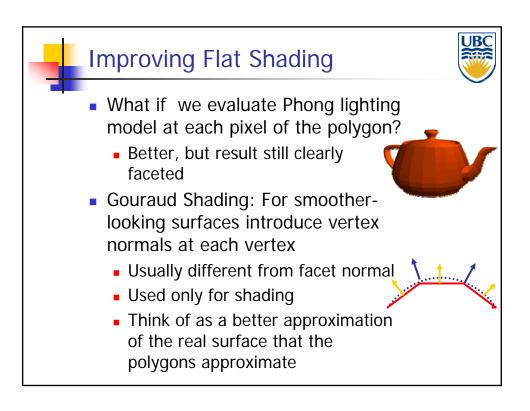
Shading

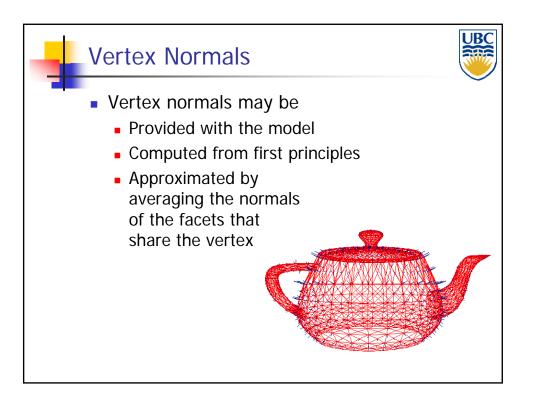
- How can we assign pixel colors using this information?
 - Easiest: flat shading
 - Whole triangle gets one color (color of 1st vertex)
 - Better: Gouraud shading
 - Linearly interpolate color across triangle
 - Even better: Phong shading
 - Linearly interpolate the normal vector
 - Compute lighting for every pixel
 - Note: not supported by rendering pipeline as discussed so far

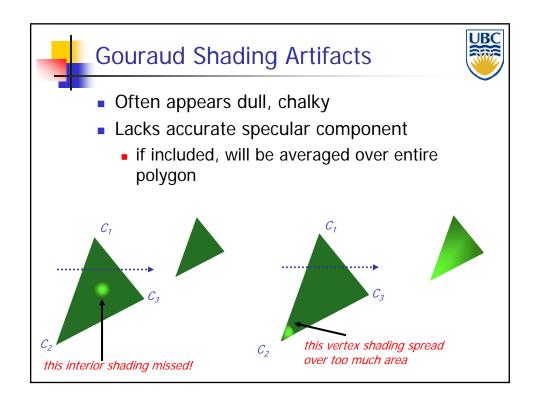








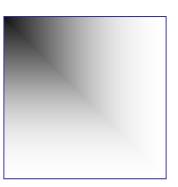




Scan Conversion- Polygons

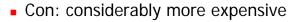
Gourand Shading Artifacts

- Mach bands
- Eye enhances discontinuity in first derivative
- Very disturbing, especially for highlights



Phong Shading

- linearly interpolating surface normal across the facet, applying Phong lighting model at every pixel
 - Same input as Gouraud shading
 - Pro: much smoother results



- Not the same as Phong lighting
 - Common confusion
 - Phong lighting: empirical model to calculate illumination at a point on a surface

Scan Conversion- Polygons

Phong Shading

- Linearly interpolate the vertex normals
 - Compute lighting equations at each pixel
 - Can use specular component

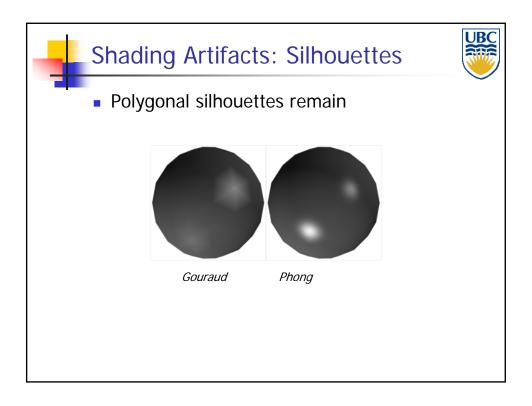
$$I_{total} = k_a I_{ambient} + \sum_{i=1}^{\# lights} I_i \left(k_d \left(\mathbf{n} \cdot \mathbf{l_i} \right) + k_s \left(\mathbf{v} \cdot \mathbf{r_i} \right)^{n_{shiny}} \right)$$
remember: normals used in diffuse and specular terms

discontinuity in normal's rate of change harder to detect

Phong Shading Difficulties

- Computationally expensive
 - Per-pixel vector normalization and lighting computation!
 - Floating point operations required
- Lighting after perspective projection
 - Messes up the angles between vectors
 - Have to keep eye-space vectors around
- No direct support in standard rendering pipeline
 - But can be simulated with texture mapping, procedural shading hardware (see later)

Scan Conversion- Polygons



Interpolation – access triangle interior

- Interpolate between vertices:
 - Z
 - r,g,b colour components
 - u,v texture coordinates
 - N_x, N_y, N_z surface normals
- Equivalent
 - Barycentric coordinates
 - Bilinear interpolation
 - Plane Interpolation

Scan Conversion- Polygons

Barycentric Coordinates

Area

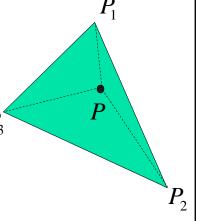
$$A = \frac{1}{2} \left\| \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3} \right\|$$

Barycentric coordinates

$$a_1 = A_{P_2P_3P} / A, a_2 = A_{P_3P_1P} / A,$$

 $a_3 = A_{P_1P_2P} / A,$

$$P = a_1 P_1 + a_2 P_2 + a_3 P_3$$



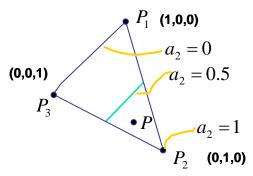
Barycentric Coordinates

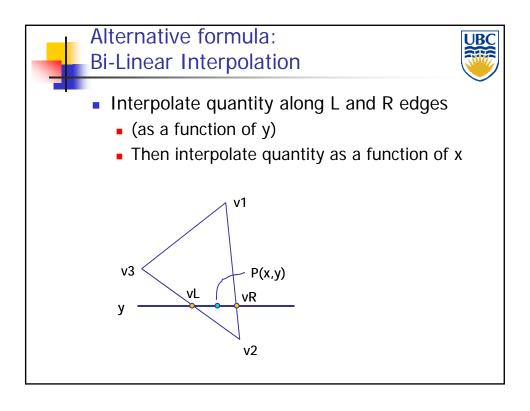
weighted combination of vertices

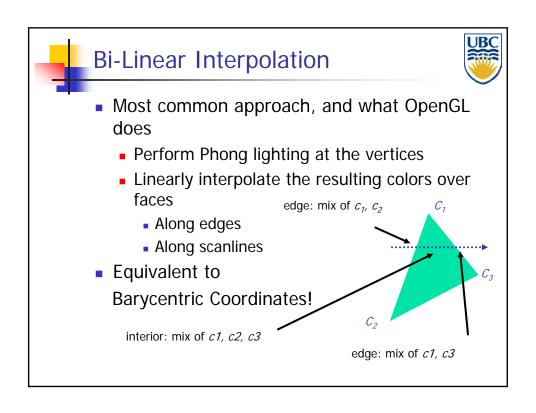
$$P = a_1 \cdot P_1 + a_2 \cdot P_2 + a_3 \cdot P_3$$

$$a_1 + a_2 + a_3 = 1$$

$$0 \le a_1, a_2, a_3 \le 1$$







Scan Conversion- Polygons

Bi-Linear interpolation

$$P_3 \qquad P_L \qquad P \qquad P_R$$

• Formulation
$$P = \frac{c_2}{c_1 + c_2} \cdot P_L + \frac{c_1}{c_1 + c_2} \cdot P_R$$

$$P_L = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3$$

$$P_R = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1$$

$$P = \frac{c_2}{c_1 + c_2} \left(\frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left(\frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \right)$$

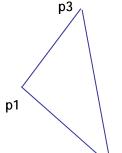
Another Alternative: Plane Equation

- Observation: Values vary linearly in image plane
 - E.g.: r = Ax + By + C
 - r= red channel of the color
 - Same for g, b, Nx, Ny, Nz, z...
 - From info at vertices we know:

$$r_1 = Ax_1 + By_1 + C$$

$$r_2 = Ax_2 + By_2 + C$$

$$r_3 = Ax_3 + By_3 + C$$



- Solve for A, B, C
- One-time set-up cost per triangle & interpolated value

Scan Conversion- Polygons

Discussion

- Which algorithm (formula) to use when?
 - Bi-linear interpolation
 - Together with trapezoid scan conversion
 - Plane equations
 - Together with implicit (edge equation) scan conversion
 - Barycentric coordinates
 - Too expensive in current context
 - But: method of choice for ray-tracing
 - Whenever you only need to compute the value for a single pixel

Validation

- All formulations should provide same value
- Can verify barycentric properties

$$a_1 + a_2 + a_3 = 1$$

$$0 \le a_1, a_2, a_3 \le 1$$