

- Universal standard
- Color (ignoring intensity) - affine combination of 3 primaries X, Y, Z
- 3D vector (x, y, z) s. t. $x+y+z=1$
- Colors inside right-angle unit triangle formed by two of the primaries
- Not all "possible" colors visible
- Visible colors contained in horseshoe region

- Pure colors (hues) located on region boundary

Physical Color

- Visible energy - small portion of the electromagnetic spectrum
- Pure monochromatic colors are found at wavelengths between 380 nm (violet) and 780nm (red)

The CIE Diagram (cont'd)

- Color "white" is point W=(1/3,1/3,1/3)
- Any visible color C is blend of hue C' \& W
- Purity of color measured by its saturation:
\square
saturation $(\mathrm{C})=\frac{d_{1}}{d_{1}+d_{2}}$
- Complement of C is (only) other hue D on line through C^{\prime} and W

Visible Color

- Eye can perceive other colors as combination of several pure colors
- Most colors may be obtained as combination of small number of primaries
- Output devices use this approach

Color Gamuts

- Most color output devices can not generating all visible colors in CIE diagram
- Possible colors bounded by triangle in XYZ space with vertices P, Q, R
- Color = barycentric combination of P, Q, R
- This triangle is called the
 device gamut

- Yellow= Red+Green
$(1,1,0)$
- Cyan = Green+Blue
- White = Red+Green+Blue
- Gray $=0.5$ Red +0.5 Blue +0.5 Green $(0.5,0.5,0.5)$
- Main diagonal of RGB cube represents shades of gray

Color Gamuts (cont'd)

- Example: Primaries of low quality color monitor:

$$
\left[\begin{array}{c}
R E D \\
G R E E N \\
B L U E
\end{array}\right]=\left[\begin{array}{l}
P \\
Q \\
R
\end{array}\right]=\left[\begin{array}{lll}
.628 & .346 & .026 \\
.286 & .588 & 144 \\
150 & .070 & .780
\end{array}\right]
$$

- Different color displays use different P, Q, R
- Same RGB image data, displayed on two monitors will look different !!
- Questions - Given P,Q \& R of two color monitors \& image I
- How to make I looks the same on both monitors?
- Is it always possible?

The RGB Color Model

- Common in describing emissive color displays
- Red, Green and Blue are primaries in this model
- Color (including intensity) described as combination of primaries

Luminance

- Color "brightness/darkness"
- Easiest to quantify on greyscale
- Harder to quantify on full color

- Human eye more sensitive to changes in luminance than to changes in hue or saturation

Uniform Quantization

- Fixed representatives - lattice structure on RGB cube
uniform quantization
- Image independent - no need to \mathbf{R} analyze input image
- Some representatives may be wasted
- Fast mapping to representatives by discarding least significant bits of each component
- Common way for $24 \rightarrow 8$ bit quantization

- retain $3+3+2$ most significant bits of

R, G and B components

