Computer Graphics

Geometric Modeling

Hermite Cubic Basis

- Geometrically-oriented coefficients
- 2 positions +2 tangents
- Require $C(0)=P_{0}, C(1)=P_{1}, C^{\prime}(0)=T_{0}, C^{\prime}(1)=T_{1}$
- Define basis function per requirement

$$
C(t)=P_{0} h_{00}(t)+P_{1} h_{01}(t)+T_{0} h_{10}(t)+T_{1} h_{11}(t)
$$

University of
British Columbia

Computer Graphics

Geometric Modeling

Hermite Cubic Basis

- Can satisfy with cubic polynomials as basis

$$
h_{i j}(t)=a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}
$$

- Obtain - solve 4 linear equations in 4 unknowns for each basis function

$$
h_{i j}(t): i, j=0,1, t \in[0,1]
$$

curve	$C(0)$	$C(1)$	$C^{\prime}(0)$	$C^{\prime}(1)$
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

University of British Columbia

Computer Graphics

Geometric Modeling

Reconstruction from Volume Data

- Volume data - view as voxel grid with values at vertices
- Defines implicit function in 3D - interpolate grid values
- Shape defined by isosurface
- isosurface = set of points with constant isovalue α
- separates values above α from values below
- Reconstruction - Extract triangulation approximating

Configurations

- For each configuration add 1-4 triangles to isosurface
- I sosurface vertices computed by:
- Interpolation along edges (according to grid values)
- better shading, smoother surfaces
- Default - mid-edges

Computer Graphics

Geometric Modeling

Consistency Problem

- Can produce non-manifold
- Isovalue surfaces with "holes"
- Example:

- Voxel with configuration 6 sharing face with II complement of configuration 3

University of
British Columbia

Computer Graphics

Ambiguous Faces

- If center value closer to "green" choose

- Else

University of
British Columbia

