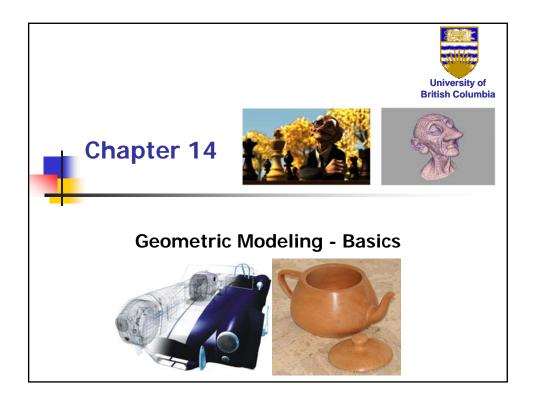
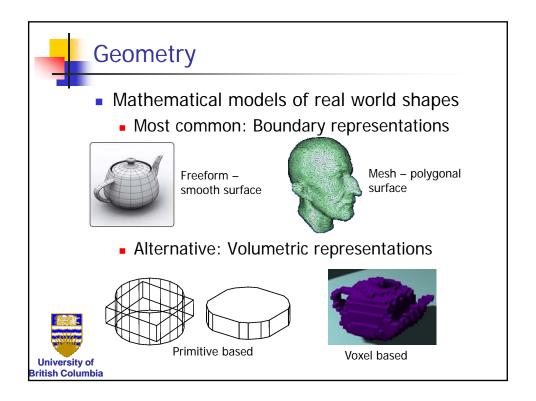
Geometric Modeling

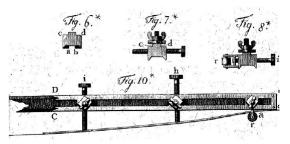




Geometric Modeling

Splines – Free Form Curves

- Geometric meaning of coefficients (base)
 - Approximate/interpolate set of positions, derivatives, etc..



Will see one example

Splines – Free Form Curves

- Usually parametric
 - C(t)=[x(t),y(t)] or C(t)=[x(t),y(t),z(t)]
- Description = basis functions + coefficients

$$C(t) = \sum_{i=0}^{n} P_i B_i(t) = (x(t), y(t))$$

$$x(t) = \sum_{i=0}^{n} P_i^x B_i(t)$$

$$y(t) = \sum_{i=0}^{n} P_i^{y} B_i(t)$$

Same basis functions for all coordinates

Geometric Modeling

Hermite Cubic Basis

- Geometrically-oriented coefficients
 - 2 positions + 2 tangents
- Require $C(0)=P_0$, $C(1)=P_1$, $C'(0)=T_0$, $C'(1)=T_1$
- Define basis function per requirement

$$C(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t)$$

Hermite Basis Functions

$$C(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t)$$

■ To enforce $C(0)=P_0$, $C(1)=P_1$, $C'(0)=T_0$, $C'(1)=T_1$ basis should satisfy

$$h_{ij}(t):i, j = 0,1,t \in [0,1]$$

curve	<i>C</i> (0)	<i>C</i> (1)	C'(0)	<i>C</i> '(1)
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

Geometric Modeling

Hermite Cubic Basis

Can satisfy with cubic polynomials as basis

$$h_{ij}(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0$$

 Obtain - solve 4 linear equations in 4 unknowns for each basis function

$$h_{ii}(t):i, j = 0,1,t \in [0,1]$$

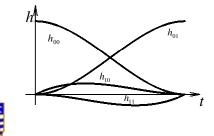
curve	<i>C</i> (0)	<i>C</i> (1)	C'(0)	<i>C</i> '(1)
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

4

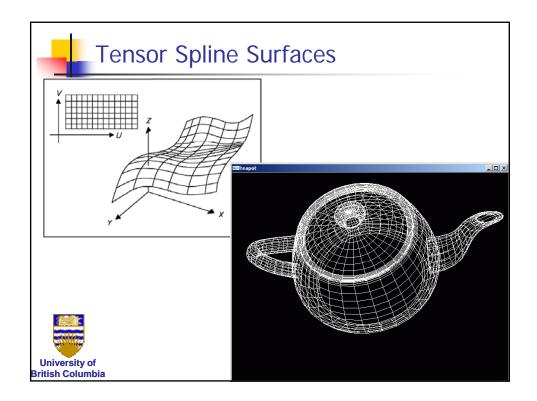
Hermite Cubic Basis

Four polynomials that satisfy the conditions

$$h_{00}(t) = t^2 (2t - 3) + 1$$
 $h_{01}(t) = -t^2 (2t - 3)$
 $h_{10}(t) = t(t - 1)^2$ $h_{11}(t) = t^2 (t - 1)$



Geometric Modeling



From Curves to Surfaces – Tensor Splines

Curve is expressed as inner product of P_i coefficients and basis functions

$$C(u) = \sum_{i=0}^{n} P_i B_i(u)$$

- To extend curves to surfaces treat surface as a curve of curves
- Assume P_i is not constant, but a function of second parameter $v: P_i(v) = \sum_{j=0}^m Q_{ij} B_j(v)$

$$C(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} Q_{ij}B_{j}(v)B_{i}(u)$$
 be

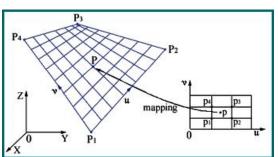
Geometric Modeling

Bilinear Patches

Bilinear interpolation of 4 3D points

$$P_{00}, P_{01}, P_{10}, P_{11}$$

- surface analog of line segment curve



Bilinear Patches

• Given $P_{00}, P_{01}, P_{10}, P_{11}$ associated parametric bilinear surface for $u, v \in [0,1]$ is:

$$P(u,v)=(1-u)(1-v)P_{00} + (1-u)vP_{01} + u(1-v)P_{10} + uvP_{11}$$

- Questions:
 - What does an isoparametric curve of a bilinear patch look like?

When is a bilinear patch planar?

Geometric Modeling

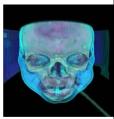
Geometry Creation (Meshes)

- Reconstruction: Capture real life shapes & convert to mesh
 - Inputs:
 - Points (laser scanner)
 - 3D images
- Modeling (user driven)
- Will see two examples
 - Marching Cubes reconstruction from images
 - Subdivision generating smooth meshes from coarse user-given "cages"

Reconstruction from Volume Data

- Volume data view as voxel grid with values at vertices
 - Defines implicit function in 3D
 - interpolate grid values
- Shape defined by isosurface
 - isosurface = set of points with constant isovalue α
 - separates values above α from values below

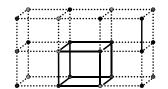
Reconstruction – Extract triangulation approximating isosurface



Geometric Modeling

Voxels

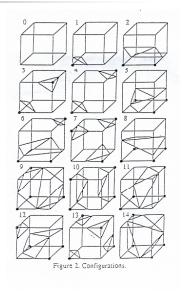
- Voxel cube with values at eight corners
 - Each value is above or below isovalue α
- 28=256 possible configurations (per voxel)
 - reduced to 15 (symmetry and rotations)
- Each voxel is either:
 - Entirely inside isosurface
 - Entirely outside isosurface
 - Intersected by isosurface



 MC main observation: Can extract triangulation independently per voxel

Basic MC Algorithm

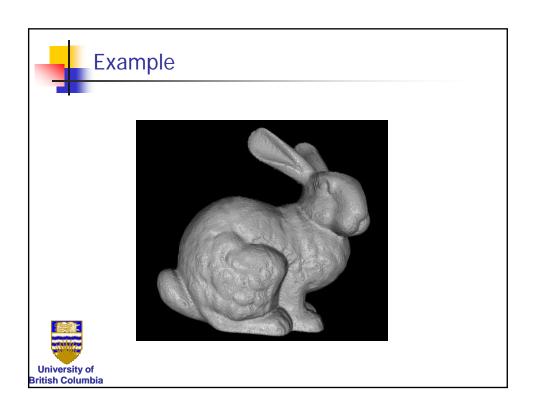
- For each voxel produce set of triangles
 - Based on above/below corner configuration
 - Empty for non-intersecting voxels
 - Approximate surface inside voxel



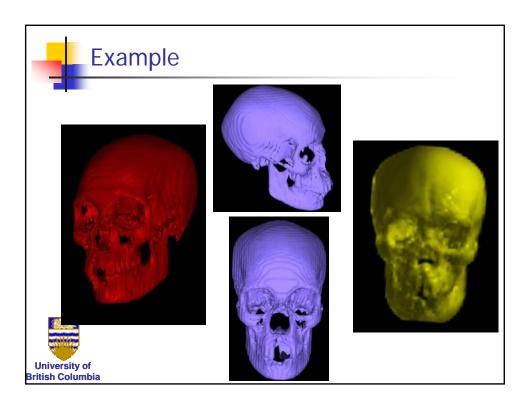
Geometric Modeling

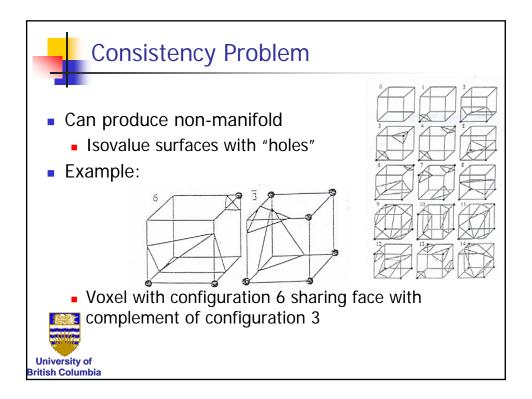
Configurations

- For each configuration add 1-4 triangles to isosurface
- Isosurface vertices computed by:
 - Interpolation along edges (according to grid values)
 - better shading, smoother surfaces
 - Default mid-edges

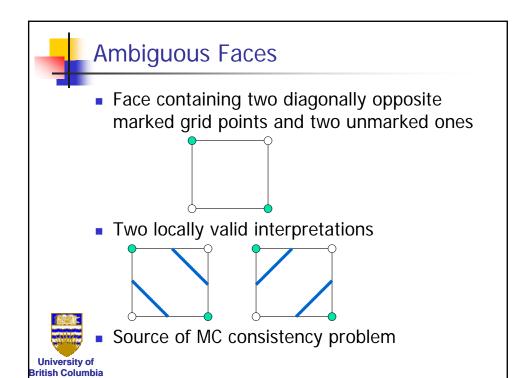


Geometric Modeling





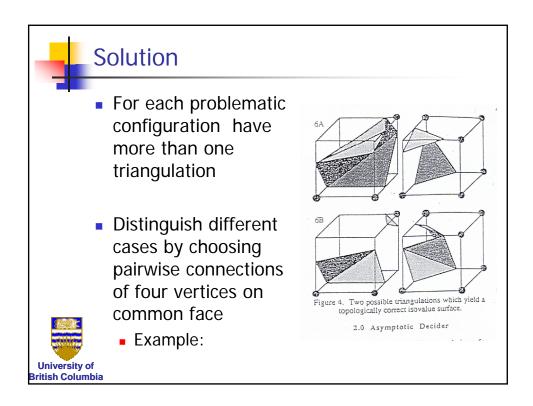
Geometric Modeling

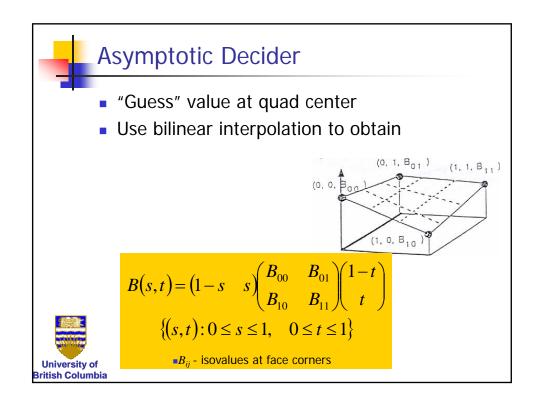


Consistency

- Problem:
 - Connection of isosurface points on shared face done one way on one face & another way on the other
- Need consistency → use different triangulations
- If choices are consistent get topologically correct surface

Geometric Modeling





Geometric Modeling

