Computer Graphics

Ray Tracing

Global Illumination Models

- Basic shading (rendering pipeline) = local illumination model
- No object interaction
- Global illumination models require more sophisticated, computation-intensive algorithms
- Ray Tracing
- Global Illumination
- Ray-tracing
- Usually offline (e.g. movies etc.)
- research on making real-time
- Flexible - can incorporate lots of phenomena

Basic Ray-Tracing Algorithm

```
RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
    if ( Reflect(obj) ) then
        reflect_color := RayTrace(ReflectRay(r,obj));
    else
    reflect_color := Black;
    if (Transparent(obj) ) then
        refract_color := RayTrace(RefractRay(r,obj));
        else
        refract_color := Black;
        return Shade(reflect_color,refract_color,obj);
end;
```


Computer Graphics

 Ray Tracing
Sub-Routines

- ReflectRay(r,obj) - computes reflected ray (use obj normal at intersection)
- RefractRay(r,obj) - computes refracted ray - Note: ray is inside obj
- Shade(reflect_color,refract_color,obj) compute illumination given three components

More About Ray-Tracing

- Algorithm above has a BUG....
- Does not terminate
- Termination Criteria
- No intersection
- Contribution of secondary ray attenuated below threshold - each reflection/refraction attenuates ray
- Maximal depth is reached

Ray-Tracing: Practicalities

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
- E.g. use BSP trees or other types of space partitioning

Ray-Tracing: Generation of Rays

- Camera Coordinate System
- Origin: C (camera position)
- Viewing direction: v
- Up vector: u
- x direction: $\mathbf{x}=\mathbf{v x u}$
- Note:

- Corresponds to viewing transformation in rendering pipeline!
- See gluLookAt...

Computer Graphics

Ray Tracing

Ray-Tracing: Generation of Rays

- Other parameters:
- Distance to image plane: d
- Image resolution (in pixels): w, h
- Left, right, top, bottom boundaries in image plane: l, r, t, b

- Then:
- Lower left corner of image: $O=C+d \cdot \mathbf{v}+l \cdot \mathbf{x}+b \cdot \mathbf{u}$
- Pixel at position $i, j(i=0 . . w-1, j=0 . . h-1)$:
$P_{i, j}=O+i \cdot \frac{r-l}{w-1} \cdot \mathbf{x}-j \cdot \frac{t-b}{h-1} \cdot \mathbf{u}$
$=O+i \cdot \Delta x \cdot \mathbf{x}-j \cdot \Delta y \cdot \mathbf{y}$

Ray-Tracing: Generation of Rays

- Ray in 3D Space:
$\mathrm{R}_{i, j}(t)=C+t \cdot\left(P_{i, j}-C\right)=C+t \cdot \mathbf{v}_{i, j}$ where $t=0 \ldots \infty$

Ray Intersections

- Other Primitives:
- Implicit functions:
- Spheres at arbitrary positions - Same thing
- Conic sections (hyperboloids, ellipsoids, paraboloids, cones, cylinders)

Same thing (all are quadratic functions!)

- Higher order functions (e.g. tori and other quartic functions)
- In principle the same
- But root-finding difficult
- Net to resolve to numerical methods

Ray-Object Intersections

- Kernel of ray-tracing \Rightarrow must be extremely efficient
- Usually involves solving a set of equations - Using implicit formulas for primitives

Example: Ray-Sphere intersection
ray: $x(t)=p_{x}+v_{x} t, y(t)=p_{y}+v_{y} t, z(t)=p_{z}+v_{z} t$
(unit) sphere: $x^{2}+y^{2}+z^{2}=1$
quadratic equation in t :
$0=\left(p_{x}+v_{x} t\right)^{2}+\left(p_{y}+v_{y} t\right)^{2}+\left(p_{z}+v_{z} t\right)^{2}-1$
$=t^{2}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)+2 t\left(p_{x} v_{x}+p_{y} v_{y}+p_{z} v_{z}\right)$
$+\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)-1$
\longrightarrow

Ray-Tracing: Practicalities

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
- E.g. use BSP trees or other types of space partitioning

Ray Intersections

- Other Primitives (cont)
- Polygons:
- First intersect ray with plane
- linear implicit function
- Then test whether point is inside or outside of polygon (2D test)
- For convex polygons

Suffices to test whether point in on the right side of every boundary edge
Similar to computation of outcodes in line clipping

Ray-Tracing: Practicalities

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
- E.g. use BSP trees or other types of space partitioning

Ray-Tracing: Transformations

- Ray Transformation:
- For intersection test, it is only important that ray is in same coordinate system as object representation
- Transform all rays into object coordinates
- Transform camera point and ray direction by inverse of model/view matrix
- Shading has to be done in world coordinates (where light sources are given)
- Transform object space intersection point to world coordinates
- Thus have to keep both world and object-space ray

Ray-Tracing: Transformations

- Note: rays replace perspective transformation
- Geometric Transformations:
- Similar goal as in rendering pipeline:
- Modeling scenes convenient using different coordinate systems for individual objects
- Problem:
- Not all object representations are easy to transform
- This problem is fixed in rendering pipeline by restriction to polygons (affine invariance!)

Ray-Tracing: Practicalities

UBC

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Speed: Reducing number of intersection tests
- E.g. use BSP trees or other types of space partitioning

Ray-Tracing: Local Lighting

- Light sources:
- For the moment: point and directional lights
- Later: are light sources
- More complex lights are possible
- Area lights
- Global illumination
- Other objects in the scene reflect light
- Everything is a light source!
- Talk about this on Monday

Computer Graphics

 Ray Tracing
Ray-Tracing: Local Lighting

- Local surface information (normal...)
- For implicit surfaces $F(x, y, z)=0$: normal $\mathbf{n}(x, y, z)$ can be easily computed at every intersection point using the gradient

$$
\mathbf{n}(x, y, z)=\left(\begin{array}{l}
\partial F(x, y, z) / \partial x \\
\partial F(x, y, z) / \partial y \\
\partial F(x, y, z) / \partial z
\end{array}\right)
$$

- Example:

$$
F(x, y, z)=x^{2}+y^{2}+z^{2}-r^{2}
$$

$$
\mathbf{n}(x, y, z)=\left(\begin{array}{l}
2 x \\
2 y \\
2 z
\end{array}\right) \quad \text { Needs to be normalized! }
$$

Ray-Tracing: Local Lighting

- Local surface information
- Alternatively: can interpolate per-vertex information for triangles/meshes as in rendering pipeline
- Phong shading!
- Same as discussed for rendering pipeline
- Difference to rendering pipeline:
- Interpolation cannot be done incrementally
- Have to compute Barycentric coordinates for every intersection point (e.g plane equation for triangles)

Ray Tracing

- Data Structures
- Goal: reduce number of intersection tests per ray
- Lots of different approaches:
- (Hierarchical) bounding volumes
- Hierarchical space subdivision
- Octree, k-D tree, BSP tree

Bounding Volumes

- Idea:
- Rather than test every ray against a potentially very complex object (e.g. triangle mesh), do a quick conservative test first which eliminates most rays
- Surround complex object by simple, easy to test geometry (typically sphere or axis-aligned box)
- Reduce false positives: make bounding volume as tight as

Computer Graphics

Ray Tracing

Hierarchical Bounding Volumes

- Extension of previous idea:
- Use bounding volumes for groups of objects

Creating a Regular Grid

- Steps:
- Find bounding box of scene
- Choose grid resolution
in x, y, z
- Insert objects
- Objects that overlap multiple cells get referenced by all cells they overlap

Spatial Subdivision Data Structures - Bounding Volumes: - Find simple object completely enclosing complicated objects - Boxes, spheres - Hierarchically combine into larger bounding volumes - Spatial subdivision data structure: - Partition the whole space into cells - Grids, octrees, (BSP trees) - Simplifies and accelerates traversal - Performance less dependent on order in which objects are inserted

Regular Grid

- Subdivide space into rectangular grid:
- Associate every object with the cell(s) that it overlaps with
- Find intersection: traverse grid

Computer Graphics

Ray Tracing

Regular Grid Discussion

- Advantages?
- Easy to construct
- Easy to traverse
- Disadvantages?
- May be only sparsely filled
- Geometry may still be clumped

Area Light Sources

- Point lights:
- Only one light direction:

$$
I_{\text {reflected }}=\rho \cdot V \cdot I_{\text {light }}
$$

- V is visibility of light (0 or 1)
- ρ is lighting model (e.g diffuse or Phong)

Are Light Sources

- Area Lights:
- Infinitely many light rays
- Need to integrate over all of them:

$$
I_{\text {refecteded }}=\int_{\substack{\text { Iidhe } \\ \text { directions }}} \rho(
$$

- Lighting model visibility and light intensity can now be different for every ray!

- Thus, at every point, we only need to compute lighting formula and shadowing for ONE direction per light
- In reality:
- All lights have a finite area
- Instead of just dealing with one direction, we now have to integrate over all directions that go to the light source

Computer Graphics

 Ray Tracing
Integrating over Light Source

- Rewrite the integration
- Instead of integrating over directions

$$
I_{\text {reffected }}=\int_{\substack{\text { light } \\ \text { dirictions }}} \rho(\omega) \cdot V(\omega) \cdot I_{\text {light }}(\omega) \cdot d \omega
$$

integrate over points on the light source
$I_{\text {reflected }}(q)=\int_{s, t} \frac{\rho(p-q) \cdot V(p-q)}{|p-q|^{2}} \cdot I_{\text {Igght }}(p) \cdot d s \cdot d t$
where: q point on reflecting surface $\& \mathrm{p}=\mathrm{F}(\mathrm{s}, \mathrm{t})$ point on the area light

- We are integrating over p
- Denominator: quadratic falloff!

Monte Carlo Integration

- Better:
- Randomly choose
the points
- Use different points on

- This produces random noise
- Visually preferable to structured artifacts
 light for computing the lighting in different points on reflecting surface

Monte Carlo Integration

- Formally:
- Approximate integral with finite sum
$I_{\text {reflected }}(q)=\int_{s, t} \frac{\rho(p-q) \cdot V(p-q)}{|p-q|^{2}} \cdot I_{\text {light }}(p) \cdot d s \cdot d t$

$$
\approx \frac{A}{N} \sum_{i=1}^{N} \frac{\rho\left(p_{i}-q\right) \cdot V\left(p_{i}-q\right)}{\left|p_{i}-q\right|^{2}} \cdot I_{\text {light }}\left(p_{i}\right)
$$

where

- The pi are randomly chosen on the light source - With equal probability!
- A is the total area of the light
- N is the number of samples (rays)

Computer Graphics

Monte Carlo Integration

- Note:
- This approach of approximating lighting integrals with sums over randomly chosen points is much more flexible than this!
- In particular, it can be used for global illumination
- Light bouncing off multiple surfaces before hitting the eye

