
CPSC 314: Programming Assignment 1

Due 4pm, Friday September, 23 2011

This is an exercise to get you started on OpenGL and experiment with both drawing and
callback commands. The goal of the program is to provide a simple game where the user
moves a paddle to deflect falling balls.

• Download and untar a1.tar.gz (from http://www.ugrad.cs.ubc.ca/˜cs314/Vsep2011/a1/a1.tar.gz
) It includes a source template (files a1.cpp, ball.hpp/cpp, paddle.hpp/cpp) and an ex-
ecutable a1 sol which runs on the department Linux machines.

• The department Linux machines should have all the libraries you need for the assign-
ment. If you work at home (Linux or windows) you need to install glut libraries and
headers on your machine. Check

http://www.opengl.org/resources/libraries/glut/glut_downloads.html

for installation instructions.

• Run ’a1 sol’ to get a sense of what a possible assignment solution should look like.

• Build the template executable. In Unix use the provided makefile. In Microsoft VS
use the provided project files. Depending on your home environment you might need
to do other changes to make the code run.

• Make the following changes:

– Draw a proper moving paddle: Modify ’Paddle::draw’ function to draw a rectan-
gular instead of square (cube) paddle. Modify the ’mouse move’ callback and the
’Paddle::draw’ function to position the paddle centered at the ’x’ coordinate of
the mouse (ignore the ’y’ coordinate). Hint: look at the way ball drawing (size
and position) is controlled and use the same framework.

– Allow changes in paddle size: Have pressing the ’>’ key increase paddle width and
the ’<’ key decrease it (make sure your paddle doesn’t end up having negative
width).

1

CPSC 314 Programming Assignment 1 Sep 8, 2011

– Generate colorful balls: There is a color variable associated with each ball, your
task is to set this variable to a (semi-random) valid color value and modify the
ball drawing function to use this color. Hint: look at how colors are set right now
for balls and other elements (RGBA).

– Let there be more light: Use a random initialization to set the ’isLight’ variable
for a small subset of balls to true (note OpenGL cannot handle above 20 or so
lights). For balls where the ’isLight’ variable is true generate a light at the center
of the ball. To set the light modify the ’Ball::setupLight’ function. Hint: Look
at ’setup lighting()’ function in ’a1.cpp’ and use a similar setup. Note that you
need to use GL LIGHT0 + lightNo as the identifier for the light.

The required changes so far will earn you 85% of the grade. To earn the remaining 15%
as well as bonus marks you need to add other improvements (the size of the bonus will be at
the marker’s discretion). For example, you could add the randomized ball sizes and the ball
explosion (on mouse click) in the ’a1 sol’ example, or add bricks that disappear whenever a
ball collides with them (as in classical arcanoid), or make the game a multiplayer one (two
paddles on opposite sides of the scene, two extra keys to control); you can make any other
change as long as you focus on tasks involving OpenGL knowledge.

Document any changes you do in the README file you submit with the assignment.
Advice - implement and test all the required tasks first before starting the free-form part.

Hand-in Instructions

• Create a root directory for our course in your account, called cs314. Later all the
assignment handin files should be put in this directory.

• For assignment 1, create a folder called assn1 under cs314 and put all the source files
that you want to handin in it, including the “makefile”. Don’t use subdirectories –
these will be deleted. NOTE: we only accept README, makefile and files ending in
cpp, hpp, c, h, txt.

• The assignment should be handed in with the exact command:

handin cs314 assn1

This will handin your entire assn1 directory tree by making a copy of your assn1
directory, and deleting all subdirectories! (If you want to know more about this
handin command, use: man handin.)

Page 2 of 2

