CPSC 314 Assignment 2

Term: September 2007, Instructor: Wolfgang Heidrich, heidrich@cs.ubc.ca, http://www.ugrad.cs.ubc.ca/"cs314

Due: Programming portion: Oct 25, 5pm; Theory: Oct 25 in class

Assignment 2.1: Line Clipping (5 Points)

a) Briefly describe the meaning of outcodes and of window-edge coordinates (WEC) in line clipping.

b) Outline the general principle of the a-clipping algorithm for clipping lines to convex polygons.

¢) Given two line segments, one from (—2, 3) to (2, —2), and the other from (—2, 3) to (2, 2), write down the steps of
the a-clipping algorithm for a window of z,y € [—1...1].



Assignment 2.2: BSP Trees (5 Points)

a) The diagram below shows a top-down-view of vertical walls in a “maze”. Construct the BSP tree that results from
inserting the individual walls in alphabetical order. Use the convention where the right subtree (child) is located on the
side that the normal points to. The positive halfspace of a wall is indicated by the side on which the letter is located.

b) What is the traversal order for a viewing position located in P?



Assignment 2.3: The Rendering Pipeline (30¢10) Points)

In this question, you will be implementing your own version of the geometric transformations involved in the
graphics pipeline, as well as implementing the scan-conversion of smoothly-shaded polygons. You can earn bonus
points for also implementing texture mapping and/or modeling a nice scene. These bonus points will carry over (i.e.
they can be used to balance lost points in quizzes and the final).

Use the template code given online as a starting point for your code. You will not be using any OpenGL functions
— all image pixels can be set using the SetPixel (x,vy, r, g, b) function call. The functions you will be imple-
menting are mostly replacements for the equivalent OpenGL functions. For example, myBegin() can be thought of as
a replacement for g1Begin ().

The file 1ibMath. cpp provides many basic math functions, such as cross-products and matrix-vector multipli-
cations. See 1ibMath.h for a list of the available functions. The following is a suggested order for implementing
and testing your code. After completing each part, ensure that the prior parts still work. The markers will be testing
your code by running scenarios A through H without restarting your program. You should only make changes to the
file mygl. cpp. A reference solution Linux executable myglref is provided for comparison.

(a) (6 points) Implement myBegin (), myVertex (), and myEnd () functions. You will be testing these func-
tions using scenario A, which uses these functions to set a few points on the screen. The template code runs
scenario A when “a” is typed on the keyboard. You will find it useful to implement a vertex data structure and
create an array of these to hold all required information about vertices. In order to make things simple, you may
assume that there are never more than 10 vertices specified between a g1Begin () and aglEnd (). Implement
my Vertex() so that it stores the untransformed coordinates as well as the current color. In your myBegin ()
function, you will need to remember the current type of primitive being drawn. Your code only needs to handle
GL_POINTS and GL_TRIANGLES. Your myEnd () function should call other functions of your own creation
to transform all the points in the vertex list to viewport coordinates and then to draw them as points for the
GL_POINTS mode. Test your code with scenario A. This sets the Model/View and Projection matrices to be
identity matrices, and so object coordinates will effectively be the same normalized-device coordinates.

(b) (5 points) Implement triangle scan conversion using solid shading and no Z-buffer. Use the color assigned to the
first vertex as being the color used for the triangle. Begin by computing the bounding box and making sure that
this scan-converts correctly. Then make use of the implicit line equations of the triangle to only set those pixels
that are interior to the triangle. Note that the bounding box should be correctly clipped to the window before
scan conversion. Test this with Scenario B.

(c) (4 points) Implement smooth shading by linearly interpolating the colors for each pixel from the colors given
for the vertices. Do this by computing barycentric coordinates for each rendered pixel. Test this with Scenario
C.

(d) (5 points) Implement myTranslate (), myRotate (), and myScale () functions. Test this with Scenario
D.

(e) (5 points) Implement the myLookAt () and myFrustum () functions, which will alter the Model/View and
Projection matrices, respectively. Test this with Scenario E.

(f) (5 points) Implement a Z-buffer by interpolating Z-values from the vertices and by doing a Z-buffer test before
setting each pixel. Test this with Scenario F. Note that a Z-buffer has already been declared for you in the
template code. Use the init_zbuf () function to initialize it — this function is called for you every time a
redraw is started.

(g) (Optional: 6 bonus points) Implement texture mapping by doing scan-converting the texture coordinates. Note
that the perspective-correct scan-conversion of texture coordinates is slightly more complex than simply using
the barycentric coordinates to produce a weighted combination of the vertex texture coordinates. When the
PCTexMap boolean flag is true then perspective-correct texture coordinate interpolation should be applied.



Otherwise, linear texture coordinate interpolation should be applied. The file 1ibImage . cpp provides the
function getTexel (image, u, v, r, g, b), which you can use to get back the RGB color of point
(u, v), where u, v € [0, 1] in the image that serves as the current texture map. Test this with Scenario G.

(h) (Optional: 4 bonus points) Model and render a small-but-interesting scene with your rendering system, such
as a stack of texture-mapped cubes, or a simple room with texture-mapped walls. Test this as Scenario H. Use
animation and your own texture images if you like. Texture images should be in the PPM format.

Hand-in Instructions

You do not have to hand in any printed code. Create a README.txt file that includes your name, student number,
and login ID for yourself, and any information you would like to pass on the marker. Create a folder called “assn2”
under your cs314 directory and put all the source files, your makefile, and your README.txt file there. Also include
any images that are used as texture maps. Do not use further sub-directories. The assignment should be handed in
with the exact command:

handin c¢cs314 assn2



Collaboration Policy

In this course, graded assignments are intended to be solved by individual students. Each student must submit their
own individual solution.

If you have collaborated with other students on the solution to this assignment, this fact needs to be disclosed in
the form below. Note that disclosing a collaboration may result in reduced marks. Likewise, if external resources
(other than the course web pages and text book) were used for solving the assignment, they need to be listed below.
Failure to disclose a collaboration or external resources constitutes an act of academic misconduct, and will be
reported to the dean.

Declaration

I hereby declare that I have read and understood the above statement.
Name:
Student ID:

Signature and Date:

I have used the following external resources:

I have collaborated with the following individuals (explain degree of collaboration):



