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Ray-tracing
Want more general representations:

Flexible like triangles
But smooth!
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Curves&Surfaces as
Parametric Functions

Curves&surfaces in arbitrary dimensions

- C :
es x=F();F:R—R"
«  Surfaces: 5 P
x=F(s,1);F:R“—R
In practice:

+  Restrict to specific class of functions
— e.g. polynomials of certain degree

m , X m (b . .
x=Y b/t In 2D: = 2 e
; (y) i= (by,iJ
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Polynomial Curves
Advantages:

+ Computationally easy to handle

— b, ... b, uniquely describe curve (finite storage,
easy to represent)

Disadvantages:
> Not all shapes representable
— Partially fix with piecewise functions (splines)
> Still not very intuitive
— Fix: represent polynomials in different basis
— For example: Bernstein polynomials
— This is what is called a Bézier curve
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NMhat are those operations?
— Dimension of this space is m+1
» One common basis for this space are the monomials

{,t,¢%,...t"}

» Problem:; the relationship between this basis and a
geometric shape is quite unintuitive

» Thus: use another basis later!
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JIntuitive control of curve using
control points!
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l.e. choose t,.,‘ rsuch that
f(t)= (x,y)

This choice will affect the
curve shape!

-

form interpolation ser

Ie choose t, such that
f(t)= (x,y)

This choice will affect the
curve shape!
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+ Clear from definition:
— All L™ are polynomials of degree m

. Li=j
T O;else

— In particular, all L™ are linearly independent!
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- Inaddition, we have forall i £'(,) = b,

- g1 other words, the polynomial interpolates the points (t,
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[ One term of alagrange polynomial
[> LTerm:= (t,ti, tj)->(t-tj)/(ti-tj);

[ Lagrange polynomials for tiin {0,2,6,7.9}
ir> L

> L4

[> L2
[
|
|

> plot({LO(t), L1(t), L2(t), L3(t), LA(L)},

Lt A S
erm = (2, '”)_)tz'—ij

0:= t-> LTexm(t,0,2)*LTemm(t,0, 6)*LTerm(t,0,7)*LTerm(t,0,9);
L0:=¢— LTerm(#,0,2) LTerm(2,0,6) LTerm(2,0,7) LTerm(z,0,9)

> Ll:= t-> LTemm(t,2,0)*LTem(t,2, 6)*LTeom(t,2,7)*LTem(t,2,9);
Lli=¢— LTerm(#,2,0) LTerm(,2,6) LTerm(#,2,7) LTerm(#,2,9)

= t-> LTerm(t, 6,0)*LTerm(t, 6,2)*LTerm(t, 6,7)*LTerm(t, 6,9);
L2:=#— LTerm(?,6,0) LTerm(#,6,2) LTerm(#,6,7) LTerm(,6,9)

L3:=¢— LTerm(¢,7,0) LTerm(z,7,2) LTerm(z, 7, 6) LTerm(z,7,9)
= t-> LTerm(t,9,0)*LTerm(t,9,2)*LTerm(t,9, 6) *LTerm(t,9,7);
1¢:=¢— LTerm(z,9,0) LTerm(2,9,2) LTerm(z,9,6) LTerm(#,9,7)
=-1.410 );

> L3:= t-> LTerm(t,7,0)*LTerm(t,7,2)*LTerm(t, 7, 6) *LTerm(t,7,9);




‘We can now use the Lagrange pol; Is to define ap that lates arbitrary values at the ! |-

For example, say we want to interpolate (0,3), (2, 1), (6,-1), (7,1), (3,1)

> Interpolant:= t-» 3*LO(t) + 1*L1(t) - 1*L2(t) + 1*L3(t) + 1*LA(Lt);
Interpolant 1=t — 3L0(¢) + L1(¢) — L2(¢) + L3(¢) + Ld(#)

> plot(Interpolant(t), t=-1..10);

AVAY
N/

Note:

+  Same works in parametric setting

»  The coefficients then become points to be
interpolated!
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¢ Graph for degree m=1:

[> plot({x,1-x},x=0..1);
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[> plot({seq(binomial (2,i)*t~i*(1-t)~(2-1),i=0..2)},
t=0..1,color=hlack);
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Graph for m=3: > prot((seubinomial (3, 1)*t~i*(1-£)(3-1),i=0..3)},
t=0..1,color=hlack);
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| - a polynomlal of degree m
B”‘(t) =0 for r €[0,1];B;'(0) =1;B/"(0) =0 for i =0
’“(t)‘ mi " (1-1)

m(t) has exactly one maximum in the interval 0..1. It
|sa t—l/m (proof: compute derivative..

Wi/o proof: all (m+1) functions B™ are Ilnearly
independent

— Thus they form a basis for all polynomials of
degree =<m
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- B'(t)=t-B"'(t)+(1-1)-B/""(t)

»  Both are quite important a fast evaluation algorithm
of Bézier curves (de Casteljau algorithm)
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*  The b, are called control points of the Bézier curve

= The control polygon is obtained by connecting the
control points with line segments

Advantage of Bézier curves:

s The control points and control polygon have clear
geometric meaning and are intuitive to use
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Properties of Bézier Curves

(Pierre Bézier, Renault, about 1960) V

Easy to see:

> The endpoints b, and b,, of the control polygon are
interpolated and the corresponding parameter
values are t=0 and t=1

More properties:

*  The Bézier curve is tangential to the control
polygon in the endpoints

> The curve completely lies within the convex hull of
the control points

The curve is affine invariant
There is a fast, recursive evaluation algorithm
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Bézier Curve Properties

F(t) = ZbiBim(t)
Recall: -

> Bernstein polynomials have values between 0 and
1 for t€[0,1], and

DIFLAOR
—  Therefore: every point on Bézier curve is convex
combination of control points

—  Therefore: Bézier curve lies completely within
convex hull of control points

© Wolfgang Heidrich
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Plug into Bézier curve definition:
F@)= 30,6850 +(1-0:50)

m m—1
=t-};b,-B;f;l(m(1—t)-2b,-B;"'l(t)
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> The control points of G(z) are the first m control
points of F(z)

«  The control points of H(z) are the last m control
points of F ()
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— Y ‘o -1 LUl V!

«  Degree 0 Bézier curves are the control points!

0
F(t)=2b,.Bi°(t)=bi-15b,.
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Tensor Product Surfaces

What about surfaces?

Use basis functions as in the case of curves

> Apply them independently to the parametric
directions s and t

¢ Works for arbitrary basis

Example:
+  Béziercurve: F(¢) = 2 B (t)-b,

*  Tensor product Be2|er patch:

F(s,t) = ZEB’" () B" ()b,
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Tensor Product Surfaces
Notes:

> The surface is polynomial in s and ¢, depending on
basis

— The degree in s is m,
— The degree in tis m,
—  The total degree is m +m,

The algorithms from the curves transfer directly to
tensor product surfaces

The properties of these surfaces are directly related
to the properties of the corresponding curves

© Wolfgang Heidrich il
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boundary points of the control mesh

> A Bézier patch interpolates the corner vertices of its
control mesh

© Wolfgang Heidrich

eling)

© Wolfgang Heidrich

18



5 In graphics

Thursday:

°  Q&A session for final prep
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