Ray-Tracing
CPSC 314

© Woltgang Heidrich

for every object o in scene {
if(r intersects 0)

Compute lighting at intersection point, using local
normal and material properties; store result in p;

else
p;= background color

B Réy—Tra‘cing
— Simple algorithm for software rendering
= Usually offline (e.g. movies etc.)

— Extremely flexible (new effects can easily be
incorporated)

© Wolfgang Heidrich

> Lighting and shadlﬁg

= Efficient data structures so we don’t have to test
intersection with every object

Note:

Origin

Up vector: u
x direction: x= vxu

Corresponds to viewing
transformation in rendering pipeline!

See gluLookAt...

© Wollgang Heidrich

2 Wellgang Heidrich

Then:

> Lower left comer ofimage: O=C+d-v+[-X+b-u
> Pixel at position i, j (i=0..w-1, j=0..h-1):

=1)

e
w-1 4 h-1

=0+i-Ax-x-j-Ay-y

D Vielfgang Heidrich

where = (...

= Lighting and shading
- Efficient data structures so we don’t have to test
intersection with every object

© Wolfgang Heidrich

U a va ort av
+ Intersection test depends on geometric primitive - Ray equation:
(el V. c +tv,
R, 0)=C+tv, =lc, [+t:|v, [=]|c, +tV,
C, v, (3 <
© Wolfgang Heidrich

. Solve for 7 (find roots) " paraboloids, cog’e cylinde,

Simple quadratic equation = Same thing (all are quadratic functions!)

— Higher order functions (e.g. tori and other quartic
functions)

= In principle the same
= But root-finding difficult
= Net to resolve to numerical methods

© Wollgang Heidich D Wialtgang Heidrich

= linear implicit function
— Then test whether point is inside or outside of
polygon (2D test)
— For convex polygons

= Suffices to test whether point in on the right
side of every boundary edge

= Similar to computation of outcodes in line
clipping

ctic vitl
Lighting and shading

Efficient data structures so we don’t have to test
intersection with every object

© Wolfgang Heidrich

odeling Sce CO anjel using
different coordinate systems for individual
objects
+ Problem:

— Not all object representations are easy to
transform

= This problem is fixed in rendering pipeline by
restriction to polygons (affine invariance!)

— Ray-Tracing has different solution:
= The ray itself is always affine invariant!

» 0 i Aeidren

+ Geometric transformations
¢ Lighting and shading

« Efficient data structures so we don’t have to test
intersection with every object

© Wollgang Heidrich

ll ray 1o 3
— Transform camera point and ray direction by
inverse of model/view matrix

Shadin? has to be done in world coordinates
(where light sources are given)

— Transform object space intersection point to
world coordinates

— Thus have to keep both world and object-space
ray

2 Wellgang Heidrich

Have to talk about light sources, normals...
Texture mapping

— Color textures

— Bump maps

— Environment maps

— Shadow maps

D Vielfgang Heidrich

nd directiona
s More complex lights are possible
— Arealights
— Global illumination
= Other objects in the scene reflect light
= Everything is a light source!
= Talk about this on Monday

AF()/,
n(x,y,z)=| 0F (x, y,z)/dy
dIF(x,y,2)/ 0z
> Example: F(x,y,z)=x"+y" +z° =7’
ZX
n(x,y,z)=|2y| Needs to be normalized!
2z

© Wolfgang Heidrich

— Phong shading!

— Same as discussed for rendering pipeline
« Difference to rendering pipeline:

— Interpolation cannot be done incrementally

— Have to compute Barycentric coordinates for
every intersection point (e.g plane equation for
triangles)

loo
— Magnification, minification just as discussed
» Problem: how to get s, 7

— Implicit surfaces often don’t have
parameterization

— For special cases (spheres, other conic
sections), can use parametric representation

— Triangles/meshes: use interpolation from
vertices

2 Wellgang Heidrich

© Wollgang Heidrich

D Vielfgang Heidrich

Ray-Tracing
Reflections/Refractions

Approach:

« Send rays out in reflected and refracted direction to
gather incoming light

* That light is multijplied by local surface color and
Fresnel term, an

added to result of local shading

© Wolfgang Haidrich

Recursive Ray Tracing
Ray tracing can handle

g Reflection (chrome)
> Refraction (glass)
g Shadows

Spawn secondary rays
. Reflection, refraction
— Ifanother object is hit, Ny pixel positions
recurse to find its color projection on projection
° Shadow reference plang

. = point
— Castray from intersection

point to light source, check if
intersects another object

© Woltgang Heidrich

Recursive Ray-Tracing

=
Refracted %

Ray Whitted, 1980

© Wollgang Heidrich

Algorithm Termination Criteria

Termination criteria

= No intersection

» Reach maximal depth
— Number of bounces

s Contribution of secondary ray attenuated below
threshold

— Each reflection/refraction attenuates ray

© Wollgang Heidrich

Recursive Ray-Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,0bj));
else
reflect_color := Black;
if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,obj));
else
refract_color := Black;
return Shade(reflect_color,refract_color,obj);
end;

© Violfgang Heidrich

Reflection
Mirror effects ole

- Perfect specular reflection

@ Wieltgang Heidrieh

Refraction d n

Happens at interface between 0,
transparent object and

surrounding medium
. E.g. glass/air boundary

Snell’s Law
Cl sinf, = c,sinf,

ight ray bends based on
ractlve indices ¢, ¢,

Total Internal Reflection

As the angle of incidence increases from 0 to greater angles ...

// //\‘A

° ﬂl

0 15 30 s
...the refracted ray becomes dimmer (there is less refraction)
...tbereﬂededmyhemmmhri@tzr(thﬂeismmemﬂecﬁm)
...the angle of refraction approaches 90 degrees until finally
a refracted ray can no longer be seen.

Ray-Tracing
Example Images

Ray-Tracing Terminology

Termlnology
Primary ray: ray starting at camera
» Shadow ray

» Reflected/refracted ray

> Ray tree: all rays directly or indirectly spawned off
by a single primary ray

Note:

> Need to limit maximum depth of ray tree to ensure
termination of ray-tracing process!

© Violfgang Heidrich

C|
I0)

i

€

Ray-Tracing

Issues:
» Generation of rays
* Intersection of rays with geometric primitives
* Geometric transformations
s Lighting and shading

+ Efficient data structures so we don't have to test
intersection with every object

© Wollgang Heidrich

Ray Tracing

Data Structures
> Goal: reduce number of intersection tests per ray
> Lots of different approaches:
— (Hierarchical) bounding volumes
— Hierarchical space subdivision
s QOct-tree, k-D tree, BSP tree

@ Wieltgang Heidrieh

OD|¢
conservative test

rays

— Surround complex object by very simple, easy to
tbest)geometly (typically sphere or axis-aligned
0X,

. Wynding volume as tight as
—
=

D

— Boxes, spheres

+ Hierarchically combine into larger bounding
volumes

Spatial subdivision data structure:
+ Partition the whole space into cells

— Grids, oct-trees, (BSP trees)
+ Simplifies and accelerates traversal

» Performance less dependent on order in which
objects are inserted

© Wolfgang Heidrich

wif

Find intersection:
traverse grid

In 3D: regular grid of

cubes (voxels):

2 Wellgang Heidrich

» Choose grid O
resoluﬁo% inx, (@)

Y,z (@]
= Insert objects Q 5 O

+ Objects that
overla I I I
multiple cells
et referenced
y all cells

they overlap

© Wollgang Heidrich

Go to next grid cell
along ray

Compute intersection

of ray wit;r all objects J

in the cell

Find closest
intersection

Check if that
intersection is inside
the cell

If so, terminate search

D Vielfgang Heidrich

: computed, reuse for future cells

Disadvantages?
= May be only sparsely filled
> Geometry may still be clumped

© Wolfgang Heidrich

+

Nested Grids

Octree/(Quadtree)

Octree/(Quadtree)

2 Wellgang Heidrich

~

%

© Wollgang Heidrich

D Vielfgang Heidrich

