CPSC 314

© Wolfgang Heidrich

Fragment/pixel shader

But can also implement

much more

Replaces texture
mapping

Fragment shader must do

texturing

But can do other things

© Wolfgang Heidrich

Access /write registers for temporary results

Value is reset for every vertex

l.e. cannot pass information from one vertex to the next
Access to read-only registers

Global variables, like ligt position, transformation matrices
Write output to a specific register for the resulting color

© Wolfgang Heidrich

Replace all of
Model/View Transformation
Lighting
Perspective projection

© Wolfgang Heidrich

Vertex Programs - ==
Instruction Set

Arithmetic Operations on 4-vectors:
ADD, MUL, MAD, MIN, MAX, DP3, DP4
Operations on Scalars
« RCP (1/x), RSQ (1/Vx), EXP, LOG
Specialty Instructions
DST (distance: computes length of vector)
¢ LIT (quadratic falloff term for lighting)

Very latest generation:
Loops and conditional jumps

© Wolfgang Heidrich

Skinning

Example
by NVIDIA

© Wolfgang Heidrich

Fragment Shaders

» Fragment shaders operate on fragments in place of the texturing
hardware

— After rasterization, before any fragment tests or blending

> |Input: The fragment, with screen position, depth, color, and a set of
texture coordinates

= Access to textures and some constant data and registers
» Compute RGBA values for the fragment, and depth
— Can also “kill “a fragment, that is throw it away

» Two types of fragment shaders: register combiners (GeForce4) and
fully programmable (GeForceFX, Radeon 9700)

© Wolfgang Heidrich

High Level Shading Languages
e.g. Cg

Cg is a high-level language developed b
g NVIDIA guag P y

» Itlooks like C or C++

> Actually a language and a runtime environment
— Can compile ahead of time, or compile on the fly
— Why compile on the fly?

» What it can do is tightly tied to the hardware

— How does it know which hardware, and how to
use it?

© Wolfgang Heidrich

void CS5E2v_fragmentLighting{floatd4 position
float3 normal

POSITION,

¢ut floatd oPosition :
ocut float3 objectPos :
out float3 cNormal

é
.3_

uniform floatdxd modelViewProj)
{ .
oPosition = mul(modelViewProj, position);
objectPos = position.xyz;
oNormal = normal;

© Wolfgang Heidrich

: TEXCOORDO,
: TEXCOORD1,

wvoid CSE3f_basiclight (#loatd position
float3 normal

out floatd color + COLOR,

uniform float3
uniform float3
uniform floatl
uniform £loat3

globalAmbient,
lightColor,

lightposition,

eyePogition,

o

/¢ Cempute the diffuse term

uniform float3 Ke,
uniform float3 Ka,
uniferm float3 K4,
uniform float3 Ks,
uniform float

© float3 P = position.xyz;
~£loatd N = normalize(normalj;

_ ¢/ Compute the emigsive term
.float3 emissive = Ke;

// Compute the ambient term

floatd ambient = Ka * globalambient;

shininess)

float3 L = normalize(lightPosition - P}):

float diffuseLight = max(dot(N, L), 0)

floatd diffuse = ¥d * lightColor * diffuselighc;

// Compute the specular term
float3 V = normalize(eyePosition - Pj;
float3 E = normalize(L + V):

float specularLight = pow(max(dot(N, H), 0),

shininess);

3f (diffuselLight <= 0) specularlight = 0;
£loat3d ‘specular = Ks * lightColor * specularLight;

color.xyz = emissive + ambient + diffuse + specular;

color.w.= 1;

© Wolfgang Heidrich

CPSC 314

© Wolfgang Heidrich

— Later: ray-tracing for such light sources
Problem statement

> A shadow algorithm for point and directional lights
determines which scene points are

— Visible from the light source (l.e. illuminated)
— Invisible from the light source (l.e. in shadow)
* Thus: shadow casting is a visibility problem!

© Wolfgang Heidrich

C

Indivi uya parts are then drawn with different
intensity
« Typically slow, O(n*2), not for dynamic scenes
Image Space

« Determine visibility per pixel in the final image
— Sort of like depth buffer
— Shadow maps
— Shadow volumes

© Wolfgang Heidrich

© Wolfgang Heidrich

Shadow Mapping
Concept (1)

Depth testing from the light’s
point-of-view
Two pass algorithm
First, render depth buffer from the light’s point-of-view
= The result is a “depth map” or “shadow map”

= Essentially a 2D function indicating the depth of
the closest pixels to the light

This depth map is used in the second pass

© Wolfgang Heidrich

Shadow Mapping
Concept (2)

Shadow determination with the
depth map

> Second, render scene from the eye’s point-of-
view

> For each rasterized fragment

= Determine fra?_ment’s XYZ position
relative to the light

= This light position should be setup to
match the frustum used to create the
depth map

= Compare the depth value at light position
XY in the depth map to fragment’s light
position Z

© Wolfgang Heidrich

The Shadow Mapping
Concept (3)

The Shadow Map Comparison

> Two values

= A = Z value from depth map at fragment’s light XY
position

= B =Z value of fragment’s XYZ light position

» If B is greater than A, then there must be something closer to
the light than the fragment

= Then the fragment is shadowed

» |f A and B are approximately equal,
the fragment is lit

© Wolfgang Heidrich

Shadow Mapping
with a Picture in 2D (1)

The A < B shadowed fragment case

e / depth map image plane
, | depthmap Z =A

(O}

source \
U\ eye

\ position

; eye view image plane,
a.k.a. the frame buffer

fragment’s 7

light Z = By

.....

© Wolfgang Heidrich

Shadow Mapping
with a Picture in 2D (2)

(@)
\\n)

U ICSARS NS HTIS LU O e UM TS ICITACASE
e / depth map image plane
bl depth map Z = A
light 1o g o
source B
A& . X ..
e position
4" ‘ ‘._.‘ \
v ;": eye view image plane,
a.k.a. the frame buffer
fragment's
I|ght Z = B ' © Wolfgang Heidrich
. .. UBC
Visualizing the Shadow =
SN

Mapping Technique (1)

A scene with fairly complex shadows

the point
light source

© Wolfgang Heidrich

10

Visualizing the Shadow
Mapping Technique (2)

Compare with and without shadows

of 7 4

t,,‘(,'d‘

- & c
l'/"' ‘s

with shadows without shadows
Visualizing the Shadow =
Mapping Technique (3) -
The scene from the light’s point-of-view
FYI: from the
eye’s point-of-view
again

© Wolfgang Heidrich

11

=
x
O

Visualizing the Shadow
Mapping Technique (4)
The depth buffer from the light’s point-of-view

!)i

{
\\n)

FYI: from the
light’s point-of-view
again

© Wolfgang Heidrich

Visualizing the Shadow ==
Mapping Technique (5)

Projecting the depth map onto the eye’s view

FYI: depth map for
light’s point-of-view
again

© Wolfgang Heidrich

12

Visualizing the Shadow
Mapping Technique (6)

Projecting light’s planar distance onto eye’s view

© Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (6)

Comparing light distance to light depth map

Green is
where the
light planar
distance and
the light
depth map are
approximately
equal

Non-green is
where
shadows
should be

© Wolfgang Heidrich

13

NC

BC

Visualizing the Shadow
Mapping Technique (7)

Complete scene with shadows

Notice how Notice how
specular curved
highlights surfaces cast

shadows on
each other

never appear
in shadows

© Wolfgang Heidrich

In Practice: L%
Depth Map Precision Issues

Have to add a little offset to depth map values to account for
limited precision

Too little bias,
everything begins to
shadow

Too much bias, shadow
starts too far back

Just right

© Wolfgang Heidrich

14

What is
Projective Texturing?

An intuition for projective texturing

» The slide projector analogy

© Wolfgang Heidrich

About
Projective Texturing (1)

First, what is perspective-correct texturing?
° Normal 2D texture mapping uses (s, t) coordinates
° 2D perspective-correct texture mapping

s Means (s, t) should be interpolated linearly
in eye-space

= So compute per-vertex s/w, t/w, and 1/w

= Linearly interpolated these three
paraméters over polygon

= Per-fragment compute s’ = (s/w) / (1/w)

and
t = (t/w)/ (1/w)

= Results in per-fragment perspective
correct (s', 1)

© Wolfgang Heidrich

15

About
Projective Texturing (2)

So what is projective texturing?
* Now consider homogeneous texture coordinates
= (s, t,r,q)-->(s/q, t/q, r/q)

= Similar to homogeneous clip coordinates where
(%, y, z, w) = (x/w, y/w, z/w)

+ ldea is to have (s/q, t/q, r/q) be projected per-fragment

© Wolfgang Heidrich

Back to the Shadow
Mapping Discussion. ..

Assign light-space texture coordinates
to polygon vertices

> Transform eye-space (X, y, z, w) coordinates
to the light's view frustum’ (match how the
light’'s depth map is generated)

> Further transform these coordinates to map
directly into the light view’s depth map

—Expressible as a projective transform
* (s/q, t/q) will map to light’s depth map texture

© Wolfgang Heidrich

16

Shadow Map Operation
Next Step:

Compare depth map value to distance of fragment
from light source

Different GPU generations support different means
of implementing this

— Today’s GPUs: pixel shader!

— Earlier: special hardware for implmenting this
feature (e.g. SGI), or just using alpha blending
[Heidrich’99]

© Wolfgang Heidrich

Issues with Shadow
Mapping (1)

Not without its problems
» Prone to aliasing artifacts
= “percentage closer” filtering helps this
= normal color filtering does not work well
» Depth bias is not completely foolproof

» Requires extra shadow map rendering pass and
texture loading

» Higher resolution shadow map reduces blockiness
= but also increase texture copying expense

© Wolfgang Heidrich

17

NC

@
NS

BC

Hardware Shadow Map
Filtering Example

GL_NEAREST: blocky GL_LINEAR: antialiased edges

Low shadow map resolution
used to heightens filtering artifacts

© Wolfgang Heidrich

Issues with Shadow L%
Mapping (2)

Not without its problems
+ Shadows are limited to view frustums

= could use six view frustums for omni-directional
light

> Objects outside or crossing the near and far clip planes
are not properly accounted for by shadowing
move near plane in as close as possible

= but too close throws away valuable depth map
precision when using a projective frustum

© Wolfgang Heidrich

/%
More Examples
Complex objects all shadow
B¢
A\
More Examples
Even the floor casts shadow
Note shadow
leakage due to
infinitely thin
Could be fixed by
giving floor
thickness

© Wolfgang Heidrich

19

Combining Projective Texturing V—i"f

for Spotlights

Use a spotlight-style projected texture to give
shadow maps a spotlight falloff

© Wolfgang Heidrich

Combining Shadows with

Atmospherics

Shadows in a dusty room

1)
2)
3)

4)

Simulate atmospheric effects such

as suspended dust
Construct shadow map
Draw scene with shadow map

Modulate projected texture
image

with projected shadow map
Blend back-to-front shadowed

slicing planes also modulated
by projected texture image

Credit: Cass Everitt

© Wolfgang Heidrich

20

Shadow Maps

Approach for shadows from point light
sources

> Surface point is in shadow if it is not visible from the
light source

> Use depth buffer to test visibility:
— Render scene from the point light source
— Store resulting depth buffer as texture map

— For every fragment generated while rendering
from the camera position, project the fragment
into the depth texture taken from the camera,
and check if it passes the depth test.

© Wolfgang Heidrich

Shadow Volumes
Use new buffer: stencil buffer

+ Just another channel of the framebuffer
> Can count how often a pixel is drawn

Algorithm (1):
> Generate silhouette polygons for all objects
— Polygons starting at silhouette edges of object
— Extending away from light source towards infinity
— These can be computed in vertex programs

© Wolfgang Heidrich

21

Shadow Volumes

AiRadeon Shader Demo §

File Options

Image by ATl

© Wolfgang Heidrich

Shadow Volumes
Algorithm (2):

+ Render all original geometry into the depth buffer

— le. do not draw any colors (or only draw ambient
illumination term)

> Render front-facing silhouette polygons while
incrementing the stencil buffer for every rendered
fragment

+ Render back-facing silhouette polygons while
decrementing the stencil buffer for every rendered
fragment

> Draw illuminated geometry where the stencil buffer
is 0, shadow elsewhere

© Wolfgang Heidrich

22

Shadow Volumes

Image by ATI

© Wolfgang Heidrich

Shadow Volumes

Discussion:

+ Object space method therefore no precision issues

> Lots of large polygons: can be slow
— High geometry count
— Large number of pixels rendered

© Wolfgang Heidrich

23

© Wolfgang Heidrich

24

