© Woltgang Heidrich

f stag fixed funct :
Modern graphics hardware is more flexible:
s Programmable “vertex shaders” replace several
geometry processing stages

s Programmable “fragment/pixel shaders” replace
texture mapping stage

» Hardware with these features now called ‘Graphics
Processing Unit” (GPU)

Rasterization Fragment Processing

© Wolfgang Heidrich

Fragment/pixel shader
. Replaces texture
mapping

ut can also implement
much more

Fragment shader must do
texturing

But can do other things

2 Wellgang Heidrich

the late 90s

> Previously, geometry processing was done on CPU,
except for very high end machines

» Downside: now limited functionality due to fixed
function hardware

© Wollgang Heidrich

is impractical
Implementing programmable hardware has
advantages over CPU implementations

implementations

be cached on GPU)

Better performance due to massively parallel

Lower bandwidth requirements (geometry can

D Vielfgang Heidrich

» Access to read/write registers for temporary results

— Value is reset for every vertex

— lLe. cannot pass information from one vertex to the next
« Access to read-only registers

— Global variables, like ligt position, transformation matrices
« Write output to a specific register for the resulting color

© Wollgang Heidrich

grammable
loating-point opei s on 4
= Points, vectors, and colors!
+ Replace all of
— Model/View Transformation
— Lighting
— Perspective projection

Figure 2 adonly, write-anly, or
read-write,

© Wolfgang Heidrich

- Vertex attributes that change per vertex:
s position, color, texture coordinates...

— Registers that are constant for all vertices
(changes are expensive):

= Matrices, light position and color, ...
— Temporary registers
— Output registers for position, color, tex coords...

2 Wellgang Heidrich

ere Vl‘-‘l S O o h‘ S
= RCP (1/x), RSQ (1/vx), EXP, LOG
Specialty Instructions

s DST (distance: computes length of vector)

* LIT (quadratic falloff term for lighting)
Later generation:

¢ Loops and conditional jumps

© Wollgang Heidrich

— Enough memory for 24 matrices
— Can arbitrarily deform objects

= Procedural freeform deformations
— Lots of other applications

= Shading

= Refraction

a

D Vielfgang Heidrich

Vertex Programming Example
Example (from Stephen Cheney)

Morph between a cube and sphere while doing lighting with a
directional light source (gray output)

Cube position and normal in attributes (input) 0,1
Sphere position and normal in attributes 2,3
Blend factor in attribute 15
Inverse transpose model/view matrix in constants 12-14
- Used to transform normal vectors into eye space
Composite matrix is in 4-7
- Used to convert from object to homogeneous screen space

Light dir in 20, half-angle vector in 22, specular power, ambient,
diffuse and specular coefficients all in 21

fgang Heidrich

Vertex Program Example

#blend normal and position # normalize normal

v= av +(1-a)v, = a(v,-V)+ v, gg%ﬁ'}',’, ‘;99’. : 9, 7

MOV R3, v[3] ; MUL R9, R9.w, R9 ;

MOV R5, v[2] ;

apply lighting and output color

ADD R6, v[0], -R5 ; DP3 RO.x, R9, c[20] ;

MAD R8, v[15].x, R8 R3 DP3RO.y, R9, c[22] ;

MADR6, v[15].x, R6, R5 ; MOV RO.zw, c[21] ;
LITR1, RO ;

transform normal to eye space Z 4

DPI RS ar RO er12) g DP3 o[COLO], c[21], Rl ;

DP3RY9.y, R8, c[13] ;
DP3R9.z, R8, c[14] ;

transform position and output
DP4 o[HPOS].x, R6, c[4] ;
DP4 o[HPOS] .y, R6, c[5] ;
DP4 o[HPOS] .z, R6, c[6] ;
DP4 o[HPOS].w, R6, c[7] ;

Wolfgang Heidrich

Skinning

Example was one case of general problem:

+ Want to have natural looking joints on human and
animal limbs

+ Requires deforming geometry, e.g.

— Single triangle mesh modeling both upper and
lower arm

— Ifarm is bent, upper and lower arm remain more
or less in the same shape, but transition zone at
elbow joint needs to deform

© Wollgang Heidrich

Skinning

Arm Example:
> M1: matrix for upper arm
> M2: matrix for lower arm

Upper arm:
weight for M1=1
weight for M2=0

Lower arm:
weight for M1=0
weight for M2=1

Transition zone:
weight for M1 between 0..1
weight for M2 between 0..1

Skinning
Approach:

> Multiple transformation matrices

— There is more than one model/view matrix stack,
e.g.
s one for model/view matrix for lower arm, and
= one for model/view matrix for upper arm
— Every vertex is transformed by both matrices

= Yields 2 different transformed vertex
positions!

— Use per-vertex blending weights to interpolate
between the two positions

© Violfgang Heidrich

Skinning

Example
by NVIDIA

Skinning

In general:
s Many different matrices make sense!

— EA facial animations: up to 70 different matrices
(“bones’)

— Hardware supported:

= Number of transformations limited by
available registers and max. instrucfion count
of vertex programs

= But dozens are possible today

© Wolfgang Haidrich

GeForce FX Fragment/Pixel
Program Examples

Source: David Kirk/NVIDIA

Fragment Shader Motivation

The idea :tfer-fragment shaders have been
around for a long time

0 Renderman is the best example, but not at all real time
In a traditional pipeline, the only major per-pixel
operation is texture mapping

. All lighting, etc. is done in the vertex processing, before
primitive assembly and rasterization

° In fact, a fragment is only screen position, color, and tex-
coords

What kind of shading interpolation does this
restrict you to?

© Wollgang Heidrich

Fragment Shaders

Fragment shaders operate on fragments in place of the
texturing hardware

— After rasterization, before any fragment tests or blending

Input: The fragment, with screen position, depth, color, and a
set of texture coordinates

Access to textures and some constant data and registers
Compute RGBA values for the fragment, and depth

e

— Can also “kill “a fragment, that is throw it away

Two types of fragment shaders: register combiners
(GeForce4) and fully programmable (GeForceFX, Radeon
9700)

© Wollgang Heidrich

Fragment Shader Generic Structure

&

registers

i arithmetic |—> rgba output
 diffuse and

r s 3 unit = = = » z-depth output
 rexture addressing

Figure 6.20. Generalized pixel shader. Variants in the pixel shader language primarily
affict the way texture nddress instructions work, where temporary results can be stored,
sud whether the s-depth can be wodified and output.

© Violfgang Heidrich

Fragment Shader Functionality

At a minimum, we want to be able to do
Phong interpolation

» How do you get normal vector info?
> How do you get the light?

> How do you get the specular color?
> How do you get the world position?

@ Wieltgang Heidrieh

| difficult

3 I O/} [J roQ
+ Shading languages and accompanying compilers
allow users to write shaders in high level languages
s Two examples: Microsoft’'s HLSL (part of DirectX 9)
and Nvidia’s Cg (compatable with HLSL)

. r_\‘enderman is the ultimate example, but it’s not real
ime

© Wollgang Heidrich

© Wolfgang Heidrich

void C5E2v_fragmentLighting(floatd position : PGSITION,
float3 normal : NORMAL,

s Actually a language and a runtime environment
— Can compile ahead of time, or compile on the fly
— Why compile on the fly?

+ What it can do is tightly tied to the hardware

— How does it know which hardware, and how to
use it?

out floaté cPosition : POSITION,
out float2 chjectPos : TEXCQORDO,
out float3 oNormal : TEXCOORDL,

uniform floatdxd modelViewProj)
¢
oPosition = mul(modelvViewProi, position);
objectPes = position.xyz;
oNormal = normal;
3

2 Wellgang Heidrich

vold C5EIL hssicLight (£AoAEd position ¢ TEXCOORDA,
. © TEECOORDL.

out #loaed color 1 COLOR,

uniforn floatd globalinbient,
uniform floatd lightcalar,
nnifork flostd LightPosition,

oniform floatd eysPosition, 14 Compute the QiCuks tarm
undforn floatd Ka, £20at3 1. = normalize(lightposition - Ii:
aniform floatd Ke. float airtusalishs - max(dot(n, Ll, 0l;

untfora float3 Kd, £loat3 diffugs = 30 * VigntCaior - diffuseLighti
unifors floae k2,

uatform flost anintnesst ¢ Compuen the mpeeular Lusa

£10a63 7 - cormaliza (eyerosicion - £]1

floatd ¥ = sormalizeil + V1:

float specularLight - powleEiEt, W CI.
“hiaiasea) s

i€ {@iTFueatignt <= U1 Zpeculoriignt = O

floatd epecular » K& * lightCoior * specuierlight)

flome 2 = poaition.xyz;
f£l08t3 I - novwalize(normalt;

74 Coopats the eniesive term
€loat3 soisaive - Ke:

colar.xyz = emizzive - wibival + iffuse « apecular;

#7 Compute the arbidns bem e

£loat3 anbient = Xa ¢ globalanbiens; R

© Wollgang Heidrich

Pigmn 2. Cocpling 352 Losding » s Prugramino he 691

D Vielfgang Heidrich

Bump/Normal Mapping
Normal Mapping Approach:

+ Directly encode the normal into the texture map
— (R.G,B)= (x,y,z), appropriately scaled
+ Then only need to perform illumination computation

— Interpolate world-space light and viewing
direction from the vertices of the primitive

= Can be computed for every vertex in a vertex
shader

= Get interpolated automatically for each pixel
— In the fragment shader:

= Transform normal into world coordinates

= Evaluate the lighting model

© Wolfgang Haidrich

Latest Developments:

Geometry Shaders (]
'meﬂl‘l!r
“Direct X 10” Hardware ~ ~=iw . b\ o,
s Geometry shaders ‘ '
° Shader r Toxturs
L 2
e +——
P@
—l-:u-./
-
m’n Depth/Stencil
Verger | m.:mT

Source: Glassenberg/Microsoft

Geometry Shader Example

Shadow volume generation

Source: Glassenberg/Microsoft

Bump Mapping
Examples

© Violfgang Hedrich

Direct3D 10
Geometry Shader Applications

Gl

Full control over the whole triangle v
« All-GPU Material Systems Lt o 708

+ Better materials | |

2o,

~ Hi-quality interpolation and derivatives
S WHlde miodels Geometry Shader
~ Cartoon and falloff effects i
Geometry/data amplification

= Fur/Fins

« Procedural geometry/detailing

« All-GPU Particle Systems

« Data visualization techniques

« Wide lines and strokes

Source: Glassenberg/Microsoft

Geometry Shader Example

Generalized displacement maps

Normal mapping
(Direct3

Source: Glassenberg/Microsoft

Geometry Shader Example

Generalized displacement maps

Displacement Mapp

Source: Glassenberg/Microsoft

Single Pass Render-To-Cubemap

Source: Glassenberg/Microsoft

Single Pass Render-To-Cubemap

1
Geometry Shader

Source:

Coming Up...
Thursday:

» Shadows

Tuesday:

> Color

© Violfgang Heidrich

